ANALYTIC GEOMETRY-VI

Semester - 11

Time Allowed : 3 Hours] [Maximum N	Aarks: 3	6
Note: Attempt two questions each from Section A and B carrying 51/2 marks each and the entire	re Sectio	T
C consisting of 7 short answer type questions carrying 2 marks each.		
Section - A		

- 1 (a) Prove that if a plane has the intersepts a,b, c and is at a distance p units from the origin, then $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{p^2}$
 - (b) A variable plane is at a constant distanced p from the origin and meets axis in A, B and C respectively, then show that locus of the centroid of the triangle ABC is $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{9}{p^2}$. 3
- 2. (a) Find the equations to perpendicular from the origin to the line x + 2y + 3z + 4 = 0, 2x + 3y + 4z + 5 = 0. Find also the co-ordinates of the foot of the perpendicular. $2\frac{1}{2}$
 - (b) Find the distance of the point (2, 3, 4) from the plane 3x + 2y + 2z + 5 = 0 measured parallel to the line

$$\frac{x+3}{3} = \frac{y-2}{6} = \frac{z}{2}.$$

- 3. (a) Find the equation of the projection of the line $\frac{x-1}{2} = \frac{y}{-5} = \frac{z}{3}$ on the plane 5x 4y z = 5.
 - (b) Show that the lines $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$, $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-3}{3}$ are coplanar, point and the equation of the plane in which they lie.
- 4. (a) Show that the S.D. between the lines x-1 y-2 z-3 x-2 y-4 z-5 . $\frac{1}{x-1}$

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}, \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5} \text{ is } \frac{1}{\sqrt{6}}, \text{ and that its equation are}$$

$$11x + 2y + 7z + 6 = 0, \text{ and } 7x + y - 5z = 7 = 0.$$
Prove that planes $2x - y + z = 0$, $5x + 7y + 2z = 0$ and $3x + 4y - 2z + 3 = 0$ meet in a point.

- Prove that planes 2x y + z = 0, 5x + 7y + 2z = 0 and 3x + 4y 2z + 3 = 0 meet in a point. Find the coordinates of their of intersection.
- 5. (a) Find the equation of the sphere which passes through the points (1, 0, 0), (0, 1, 0) and (0, 0, 1) and has its radius as small as possible.

 2.5
 - (b) Find the centres of two spheres, which touch the plane 4x + 3y = 37 at the point (8, 5, 4) and the sphere $x^2 + y^2 + z^2 = 1$.
- 6. (a) Show that locus of point from which equal tangents may be drawn to the spheres $x^2 + y^2 + z^2 = 0$, $x^2 + y^2 + z^2 + 2x 2y + 2z 1 = 0$,

 $x^2 + y^2 + z^2 - x + 4y - 6z - 2 = 0$ is the straight line $\frac{x-1}{2} = \frac{y-2}{5} = \frac{z-1}{3}$.

21/2

- A sphere of constant radius k passes through the origin and meets the axis in A, B and C. (b)
- Prove that the centroid of the triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$. 3 Find the equation to the right circular cone whose vertex is P(2, -3, 5), axis PQ which 7. (a) makes equal angles with the axes and which passes through A(1, -2, 3).
 - Find equation of conc whose vertex is (2, -3, 1) and whose guiding curve is $4x^2 + y^2 = 1$, (p) z = 0.
- Prove that the equation $\sqrt{fx} + \sqrt{gy} + \sqrt{hz} = 0$ represents a cone which touches the coordinate 8. (a) planes and the equation of reciprocal cone is fyx + gzx + hxy = 0.
 - Find the equation to the lines in which the plane 2x + y z = 0 cuts the cone $4x^2 y^2 + 3z^2 = 0$. Also find angle between them. (b)

Section - C

9. Attempt all the following:

- Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 1$, x + 2y + 3z = 4 nd the (a)
- Find the value of k such that $x^2 + y^2 + z^2 + 2x 4y + 6z + k$ (b) represents a sphere of radius

- Find the equation of the cone which passes through the co-ordinates axes and lines (c) $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and $\frac{x}{3} = \frac{y}{-1} = \frac{z}{1}$.
- Find the equation of the plane through the points (3, -1, 2), (1, -1, -3) and (4, -3, 1). (d)
- Find area of triangle included between the plane 2x 3y + 4z = 12 and the coordinate (e) planes.
- Find the point where the line $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$ meets the plane 3x + 4y + 2z = 7. Find the coordinate of the image of origin in the plane 2x + 3y 4z = -1. (2×7=14) (f)