
PHYSICAL CHEMISTRY-III

(Common with D.S. B. (Semester-III)		
(Common with B.Sc., Bio-Technology, Industrial Microbiology) Time: Three Hours		
Note	: At	tempt five questions in all, selecting two questions from each of Section A and B. Question b. IX (Section C) is compulsory. Use of scientific non-programmable calculator is allowed. Section-A
1.		Define First Law of Thermodynamics in atleast three ways. Derive mathematical expression for ist law.
П.	(c) (a) (b)	Prove that C for an ideal gas is constant and nearly equal to 5 cal. degree moly. 2 Prove that Joule-Thomson coefficient for an ideal gas is zero. What is inversion temperature. 3
Ш.	(c)	strong base remains the same and changes of neutralization of a strong acid and
	(a)	State and explain Carnot's theorem. Explain how on the basis of efficiency of a reversible Distinguish between:
	(c)	(i) Isothermal and Adiabatic process. (ii) Dependent and Independent variables. What are the limitations of Filled processes.
IV.	(a)	by the second law of thermodynamics? Define it in as many ways as you can.
	(b)	Calculate the maximum officiency of
V.	(c)	Define 'Bond Energy'. How is the bond energy of a bond calculated for a polyatomic molecule? How is it used to calculate the enthalpy change of a reaction?
	(a)	Derive an expression for the
	(b)	Derive an expression for the entropy change on mixing of ideal gases. From this expression Apply Le-Chatelier's principle to predict suitable condition for getting maximum yield of the product in the manufacture of hydrogen by Bosch process.
	(c)	Defice thermodynamically the relationship $(\Delta G)_T = nRT \ln \frac{P_2}{r}$
VI.	(a)	Show that $(\Delta G) = \Delta \Pi + T \left[\frac{\delta(\Delta G)}{\delta T} \right]$
	(b)	Prove that there is no net change in entropy in a reversible and
	(c)	Prove that there is no net change in entropy in a reversible process and $\Delta S_{system} + \Delta S_{surrounding} \ge 0$ for an irreversible process. Derive the following thermodynamic expression
VII	(2)	(i) $\left(\frac{\partial A}{\partial V}\right) = -P$. (ii) $\left(\frac{\partial A}{\partial A}\right) = -S$
V 11.	(a) (b)	State unity law of thermodynamics is a significant
	(c)	One walk at the equilibrium derive the relation AC ⁰ = DT:
		One mole of helium gas is heated from a temperature of 300 K to 600 K. Calculate the enteropy change if (i) Volume is kept constant (ii) Pressure is kept constant.
S		enteropy change if (i) Volume is kept constant (ii) Pressure is kept constant. Assume that

