ANALYSIS-II

Semester - III

Time Allowed: Three Hours]

Note: The candidates are required to attempt two questions each from Section A and B carrying 8 marks each and the entire Section C consisting of 8 short answer type questions carrying 1 marks. Section: A
Show that a monotonic function in [a, b] is Riemann Intergrable. 1. 0, where x is rational (1, where x is irrational Show that f is not Riemann integrable in any interval. 2. If function f is continuous in [0, 1]. Show that: State and prove Fundamental Theorem of Integral Calculus. 4 Show that the function f (x) defined as below is integrable in [0, 1]: 3. $f(x) = \frac{1}{2^n}, \frac{1}{2^{n+1}} < x \le \frac{1}{2^n} (n = 0, 1, 2....)$ $= 0 \quad x = 0.$ (b) Show that sum of two Riemann Integrable functions is Riemann Integrable. A function f is Riemann Integrable in [a, -c, a + c] and 4. $|f(x)| \le M \forall x \in [a-c, a+c]$. Also $\int f(x) dx = 0$ and $f(x) = \int_{a-c} f(t)dt$. Prove that $\int_{a-c}^{c} f(x)dx \le Mc^2$. 8 (a) Show that the real sequence $\{x_n\}$ converges if and only $\{x_n\}$ is Cauchy sequence.

7.

- (b) Suppose $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$. Show that $\{x_n\}$ is convergent and $2 \le \lim_{n \to \infty} x_n \le 3$.
- Let $\{u_n\}$ be a monotomic sequence and $\lim u_n = 0$ then prove that $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ is convergent. Hence

prove that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\alpha}}$ converges if and ony if $\alpha > 0$. Define absolute convergence of a series. Show that if a series converges absolutely then it converges. Is the converse true? Justify.

State Able's Test of convergence of series. Show that $\sum_{n=1}^{n} n^{1/n}$ 8.

 a_n is convergent if $\sum_{n=1}^{\infty} a_n$ is convergent.

With the help of Dirichlet's test, show that the series $1 - \frac{1}{3.2} + \frac{1}{5.2^2} - \frac{1}{7.2^3} + \dots$ is convergent. 4 Section: C

Do as directed:
(a) Show that a constant function is Riemann Integrable.
(b) Let P be a partition of [a, b] and f: [a, b] function. If P* is a refinement of P, show that L (p, f) ≤ L (P*, f).
(c) Show that 1-1/2+1/3-1/4/3 convergence.
(d) State Gauss Test of convergence of series.

Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n}$ is conditionally convergent.

Find the limit of sequence $\{\sqrt{n^2 + n - n}\}$. (f)

Give an example of bounded sequence which is not convergent.

Suppose that f and g are Riemann Integrable on [a, b] and $f \le g$ on [a, b]. Then $\int_{a}^{b} f \le \int_{a}^{b} g$. $1 \times 8 = 8$