ALGEBRA-I

Semester-V

Time Allowed: 3 Hours]

[Maximum Marks: 40

Note: The candidates are required to attempt five questions in all, selecting two questions each from Section A and B of the questions paper and the entire Section-C. All questions will carry equal marks.

Section - A

 Let A(S) denotes the set of all permutations on a non-empty set S, then A(S) froms a group under the operation of composition of maps.

(a) State and prove Fermat's theorem.

(b) Let a, b and x be any elements of a group G. Then prove that $O(a) = O(x^{-1} ax)$.

(a) The centre Z(G) of a group G is a normal subgroup of G.
(b) Prove that every subgroup of a cyclic group is cyclic.

4. State and prove Third fundamental theorem on Homomorphism.

Section - B

5. Prove that the set M of all n × n matrices over reals is a non-commulative ring with unity with zero divisors under addition and multiplication of matrices.

6. (a) Prove that every division ring is simple ring.

- (b) Let I = {6n : n ∈ Z} be an ideal of Z. Write the composition table for the quotient ring Z/I.
- State and prove second Isomorphism theorem.
- 8. (a) Find the field of quotient of integral domain $Z[\sqrt{5}]$.

9.	(b) (a) (b) (c) (d)	Prove that every irreducible element in a principal ideal domain is a prime element. Section - C Define Permutation group with example. Define order of element of a group with example. State the Einstein criteria.	1 1 1
	(e)	If F is a field, prove that its only ideals are (0) and F itself. 1 Prove that intersection of two left ideals of a group again a left ideal of the group. Prove that every field is an integral domain. State first Isomorphism theorem. Find the units of Z_1 . Define prime and irreducible element with example. Define characteristics of a Ring.	1 1 ½ ½ ½
			1/2
N	N		