DISCRETE MATHEMATICS—I

Paper-II Semester-V

-		Semester-v	
		lowed : 3 Hours] [Maximum Ma	rks: 36
No	te:	The candidates are required to attempt two questions each from Sections A and B carry	ing 51/2
		marks each and the entire Section C consisting of 10 short answer type questions carr	ing 1.4
		mark each.	5
		SECTION-A	
١.	(a)	For any sets A d B, show that $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$	21/2
	(b)		
	, ,	that set.	3
2.	(a)	If $R = \{(a - b) : a - b = \}$ and $S = \{(a, b) : a - b \text{ is even}\}$ are two relations on $A = \{1, 2\}$	3 43
		Then draw diagraph of R and S. And show that $R^2 = S^2$.	21/2
	(b)		n+3. 3
3.	(a)	Prove that for a bounded distributive lattice L, the complements are unique if they exist	1 21/
	(b)	Let D ₄ and D ₆ be two lattices. Draw the Hasse diagram of D ₄ X D ₆ . Is it a lattice? Justi	fy your
		answer.	3
4.	(a)	Find how many arrangements can be made with the letters of the word 'MATHEMA	TICS
		In how many of them:	
		(i) Consonants occur together	
		(ii) Vowels occur together	
		(iii) Vowels do not occur together?	21/2
	(b)	Find number of friends you must have to guarantee that at least five of them wi	ill have
		birthday in the same month.	3
		SECTION-B	5
5.	(a)	Show that finite connected graph is Eulerian iff each vertex has even degree.	21/2
	(b)	Draw binary tree when In order and Post order traversal is given:	2/1
		In order: mknjolus vqtpr	
		Post order: m n k o u v s t q r p l j.	3
5.	(a)	Prove that graph G is connected iff it has a spanning tree.	21/2
	(b)	Find minimum spanning tree of weighted graph:	2/1
	` ′		
		B	
		8 3	
		7 3	

3

B. Sc. Part -III (Paper-2017) Sem. V & VI

7. A salesman must travel from city to city to sell his product. The following table shows the distance (in km) between various cities:

To City → From City	A	В	С	D	E
Α.	- 0	40	24	30	200
В	40	0	25	300	. 30
·C	24	25	0	- 26	26
D	30	300	26	0	40
Е	200	30	26	40	0 .

5½ 2½ 3

- 8. (a) Show that $K_{3,3}$ satisfies the inequality $|E| \le 3 |V|$ -6 but is not planar.
 - (b) Is there is a simple graph G with six vertices of degree 1, 1, 3, 4, 6, 7?

SECTION-C

- 9. (a) Two dice are tossed once. Find the probability of getting 'an even number on the first die or total of 8'.
 - (b) State and prove De-Morgan's law.
 - (c) How many elements will the power set of the following set has A = {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10}?
 - (d) Construct grammar for the language L = {aaaa, aabb, bbaa, bbbb}.
 - (e) For a group photograph, 3 boys and 2 girls stand in a line in all possible ways. How many photos could be taken if each photo corresponds to each such arrangement?
 - (f) State and prove handshaking theorem.
 - (g) Define Bipartite and complete bipartite graph.
 - (h) Define minimum spaning tree and forest.
 - (i) Give an example of a graph which is Euler but not Hamiltonian.
 - (j) Show that there is one and only one path between every pair of vertices in a tree.

10x1.4=14