DISCRETE MATHEMATICS-I

Paper - II Semester-V

Semester-v	
Time Allowed: 3 Hours] [Maximum Marks: 40	
Note: The candidates are required to attempt five questions in all, selecting two questions each from	
Secti	on A and B of the questions paper and the entire Section-C. All questions will carry equal
mark	is.
	Section - A
1. (a)	Prove that a set containing 15 distinct elements has 215 subset.
(b)	In a Class of 60 boys, there are 45 boys who play cards and 30 boys carom. How many
(-)	boys play both games? How many play cards only and how many play carom?
2. (a)	Prove by the Mathematical induction that $5^{2n+2} - 24n - 25$ is divisible by 576.
(b)	Explain type of Grammars and Languages.
3. (a)	Use Binomial theorem to find value of 195.
(b)	Find the number of permutations of the letters of the word 'COMMERCE'.
4. (a)	Define circular permutations. In how many ways can 6 beads of different colours from a
, (4)	necklace?
(b)	A man has four friends. In how many ways can be invite one or more friends to a Tea
(0)	party?
	Section - B
5. (a)	Prove that the following statements are equivalence for a graph G:
J. (a)	(i) G is a 2-colorable
	(ii) G is bipartite
	(iii) G contains no. odd cycle.
(b)	Can a graph with seven vertices be isomorphic to its complement? Justify.
	e and prove five Colour theorem.
	A simple undirected graph G is a tree if and only if G is connected and has no cycles.
7. (a)	Modify Kruskal's alogrithm so that it will produce a maximal spanning tree, that is one with
(b)	largest possible sum of weights.
0 F1	ain the Finite state Machines as language recognizers with example.
8. Expl	Section - C
a (-)	Define the term root and leaf in a tree.
9. (a)	
(ь)	Show that a linear planar graph with less than 30 edges has a vertex of degree 4 or less. 1
(c)	State Euler's formula.
(d)	State basic Counting principles.
(e) (f)	Define Partial order relations with example.
(f)	State Four colour theorem.
(g)	Draw a binary tree representing the expression
	$((x + y) \uparrow 2) + ((x - 4)/3).$ \(\frac{1}{2}\)