DISCRETE MATHEMATICS-I

		4.00
Time	: Three Hours] [Maximum Marks	: 40
Note	: Attempt two questions each from Section A and B carrying 7½ marks each. Section	Cis
Note	compulsory consisiting of 10 short answer type questions carrying 1 mark each.	
	Section - A	
T '7	Let $f: X \to Y$ and $g: Y \to Z$ and let f, g be one-one onto. Then $g f: X \to Z$ is also one-one	onto
Ι. ΄	Let $f: X \to Y$ and $g: Y \to Z$ and let f, g be one, one of the state $f: X \to Z$	71/2
**	and $(g \circ i)^{-1} = f^{-1} \circ g^{-1}$. Let $A = [1, 2, 3, \dots, 9]$ and '~' be a relation on $A \times A$ defined by (a, b) iff $a + b = b + c$.	
II.		
	(i) Prove that '~' is an equivalence relation.	71/2
117	(ii) Find the equivalence clas of (2,5) State principle of Inclusion and Exclusion. In a class of 25 students, 12 have taken economic	
III.	have taken economics but not political science. Find the number of students who have t	aken
	economics and political science and those who have taken political science but not economics	71/2
13.7	Find the minimum number n of integers to be selected from $S = \{1, 2, 3,9\}$ so that	. //2
IV.		
	(i) the sum of two of the n integers is even. (ii) the difference of two of the n integers is 5.	71/2
	Section - B	/ /2
V.	State Euler's Theorem. Prove that the number of edges in a complete graph with a vertice	or in
v.		C2 12
	m(n-1)	71/
	2	7½
VI.	For a graph G prove that	
• • • •	40 1 m [1 1001.1	
	(i) G is connected iff it has a spanning tree. (ii) G is a tree iff it is minimally connected.	71/2
VII.	Produce a finite state machine that adds two integers using their binary expansions.	71/2
νίίι.	let G = (v, E) be a connected planar graph and let R be the number of regions defined by	/ /2
	planar depiction of G. Then $R = E - V + 2$.	
	Section - C	71/2
	(Compulsory Questions)	
IX.	Answer in brief:	
	(a) Give Check whether a relation "divides" on a set of integers is a partial order relation	•
	(b) Define regular grammar and Context free grammar.	1?
	(c) Draw the Hasse diagram of the relation ⊆ on P(A), where A = {a, b, c}.	
	(d) Prove that there is one and only one path between every pair of vertices in a tree.	
	(e) The function $f(x) = 2x$, $x \ge 0$ has an inverse? Give specific answer.	
	(f) State Travelling Salesman Problem.	
9	(a) A Find n if a complete graph having a vertice best 5 of	
	(g) Find n, if a complete graph having n vertices has 15 edges. (h) Define d-regular graph. Draw 3-regular graph with eight vertices	
	(h) Define d-regular graph. Draw 3-regular graph with eight vertices.	

Prove that the graph K₅ is not planar.
What is pigeonhole principle and extended pigeonhole principle? (i) (j) 1x10=10