NUCLEAR AND PARTICLE PHYSICS-III

Time	Allow	red : Three Hours Maximum Marks	: 75	
Note	: The mark	candidates are required to attempt at least one question each from Section A, B and C carrying s each and five questions from Section E consisting of 8 short answer type questions carryin	, 15	
	marks each. Section - A			
1.	(a)	What do you mean by binding energy of a nucleus? Further discuss its variation with mumber of the nucleus.	iass 5	
2	(b) (a)	Derive the experssion for semi-empirical mass formula and discuss its limitations. Why electrons cannot exist inside the nucleus?	10	
	(b)	Derive the expression for electric quadrupole moment of the nucleus by expressing the electrosts energy possessed by nucleus in terms of electric moments and discuss its physical significant	e.7	
	(c)	Calculate the binding energies of the following isobars and their binding energies per nucleor is given that 28 Ni ⁶⁴ = 63.9280 amu, 29 Cu ⁶⁴ = 63.9298 amu. Section - B	1. It 4	
3.	(a)	Discuss the law of successive radioactive transformation and deduce the expression for num of atoms of the nth member in the decay chain.	ber 6	
٠,	(c)	Specify and briefly explain different radioactive decay modes. Discuss the reasons for hypothecation of neutrino and specify its properties.	5	
4.	(a)	Find the number of α – decays the occur in 1 g of Th ²³² in one year, if its disintegration const is $1.58 \times 10^{-18} \text{s}^{-1}$.	tant	
	(b)	Briefly discuss different conservation laws governing the nuclear reactions. Section - C	10	
5.	(a) (b)	State and explain the Bethe's formula for specific energy loss of heavy charge particles in matter. Compare the energy loss mechanisms for heavy charge particles and fast electrons in matter.	r. 5 7	
	(c)	In an absorption experiment with 1.14 MeV γ - radiation from Zn ⁶⁵ it was found that 25 cm or reduced intensity to 2%. Calculate the half value thickness and the mass absorption coefficiental for this radiation.	fAl	
6.	(a) (b)	Discuss qualitative features of different interaction processes of γ – rays with matter. A betatron operating at 50 cycles/s with a stable orbit diameter of 60 inches was having maxim magnetic field of 4000 Gauss. Calculate the average energy gained per revolution and final energy fine electrons.	6 ium ergy	
	(c)	Specify and briefly discuss different components of a cyclotron. Section - D	5	
7.	(a)	Describe the working principle of a gas filled radiation detector with the help of output signerses applied voltage curve.		
	(b)	A GM counter with a cathode of diameter 5 cm and wire of diameter 0.012 cm is filled with argo a pressure such that the mean free path is 7.8 × 10 ⁻⁴ cm. Calculate the value of the voltage must be applied to just produce an analanche.	that	
0	(c)	What do you mean by Baryon number and Lepton number Explain with the help of examples	. 5	
8.	(c) (a) (b)	What do you mean by isospin? How is it related to the baryon number? What is the basic principle of a scintillation counter? Briefly discuss essential components scintillation counter.		
٠,	(c)	Why must the quarks in a hadron have different colours? Would they have to have diffe colours if their spins were 0 or 1?	rent	
^	Section - E			
9.		pt any five parts in brief: What is charge conjugation? Explain with hide of on exemple		
	(a) (b)	What is charge conjugation? Explain with help of an example. Why does the Geiger plateau show a small slope?	-	
		What are the nucessary conditions for pair production process to take place 9		
	(c) (d)	what is the difference between gamma-rays and x-rays?		
11/	(e) (f)	what is the difference between neutrino and a photon?		
	甾	What do you mean by magic numbers for a nucleus? What do you mean by electron capture? Give example.		
	(g) (h)	What does () value at a nuclear reaction signification	3=15	