ALGEBRA-II

Paper - III Semester-VI

Time	Allowe	ed: 3 Hours
Note	: The c	candidates are required to attempt two questions each from Sections A and B carrying 5.
	mark	s each and the entire Section C consisting of 10 short answer type questions carrying
		s each.
		Section - A
1.	(a)	Show that any plane passing through (0, 0, 0) is a subspace of R ³ .
1.	(b)	Examine whether $\{1, -3, 5\}$ belongs to the linear space generated by S, where $S = \{1, 2, 2, 3, 5\}$
		1 1) (4 5 2)) or not 2
		, 1, -1), (4, 5, -2)} or not?
_	2.5	Then should be subsequently $f(x) = 0$ is
2.	(a)	Let V be a vector space of function $f: R \to R$. Then show that all f where $f(-2) = 0$ is a
	•	State and prove Replacement theorem.
	(b)	Didle this prove replacement incorem
3.	(a)	Let V be vector space of 2 ×2 matrices of R and W be asset of all 2 ×2 diagonal matrices
	over l	R. Show that W is a subspace of V and find basis of V/W. 2.5
	(b)	If V and W are fine dimensional subspaces of a fine dimensional vector space U(F). Prove
	that V	$V + W$ is also finite dimensional and dim $(V + W) = \dim V + \dim W - \dim V \cap W$. 3
4.	(a)	Extend $\{(-1, 2, 5)\}$ to two different basis of \mathbb{R}^3 .
	(b)	Find basis and dimension of the solution space W of the following system of equations:
	` '	x + 2y - 4z + 3t - s = 0
		x + 2y - 2z + 2t + s = 0
		2x + 4y - 2z + 3t + 4s = 0
		Section - B
5.	(a)	Find linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(2, 3) = (1, 2)$ and $T(3, 2) = (2, 3)$.
٥.	2.5	The mean number (2, 3).
	(b)	Prove that non-zero eigen vector corresponding to distinct eigen values of a linear operator
	` '	learly independent.
6.		
0.	(4)	Find range, rank null space and nullity for $T(x, y) = (x + y, x - y, y)$ transformation on a
	vector	space R ² .
	(b)	Find a linear map $T: \mathbb{R}^4 \to \mathbb{R}^3$ whose will null space is generated by (1, 2, 3, 4) and
		(0, 1, 1, 1).
		[6 -3 -2]
7.	Find c	haracteristic and minimal polynomial of a matrix $\begin{vmatrix} 4 & -1 & -2 \end{vmatrix}$ using idea of minimal
	1	haracteristic and minimal polynomial of a matrix $\begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix}$, using idea of minimal
		and Collinson Court
1	poryno	omial, find inverse of matrix.

5.5

8. (a) if the matrix of the linear operator T or R³ relative to basis:

B = {(e₁, e₂, e₃)} = {(1, 0, 0) (0, 1, 0), (0, 0, 1)} is
$$\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
. Find the matrix of T

relative to basis

 $B_1 = \{(0, -1, 1), (1, -1, -1), (1, -1, 0)\}.$

(b) Prove that two finite dimensional vector space V(F) and W(F) over the same field F are isomorphic iff they have same dimensions.

Section - C

- 9. (a) Show that all polynomials over R with constant terms 2 doesn't from vector space.
 - (b) If S is a subspace of V then show that L(s) = S.
 - Find value of K so that the vector (1, -2, k) becomes linear combination of the vectors (3, 0, -2) and (2, -1, -5).
 - (d) If S is a subset of V, then prove that $S = \text{span } (S)^{\perp}$.
 - (e) State and prove Pythagoras theorem for orthogonal set of vectors.
 - (2) Prove that minimal polynomial of a matrix exist uniquely.
 - (2) Define singular transformation and Nullity of transformation.
 - (a) Suc w that set containing vector 0 is always linear dependent.
 - (i) The reinional polynomial of an operator T divides every polynomial which has T as a zero.
 - (j) Prove the if α is an eigen value of a linear operator T on V(F) iff α is a root of the minimal p inpinial of T.

 10×1.4=14