ALGEBRA-II

Paper - III Semester-VI

Time Allowed: 3 Hours]

Note: Attempt five questions in all, selecting two question from each Section A and B compulsory

Section - A

1. Let V be a vector space of all functions from R to R. If $U = \{f \in V : f \text{ is even}\}$ and

 $W = \{g \in V : f \text{ is odd}\}\$, then show that

(i) U and W are subspaces of V.

(ii) $V = U \oplus W$.

8

(a) Show that the set of all real valued continuous functions y = f(x) satisfying the differential equation

is a vector space over R. Find also the basis of the vector space.

y''' + 5y'' + 11y' + 6y = 0

4

- (b) Under what condition on scalar τ do the vectors $(0, 1, \tau)$, $(\tau, 0, 1)$ and $(\tau, 1, 1 + \tau)$ forms a basis of \mathbb{C}^3 .
- 3. (a) If x, y and z are vectors in vector space over F such that x + y + z = 0, then show that x and y span the same subspace as y and z.
 - (b) Show that the vectors (1, 1, 2, 4), (2, -1, -5, 2). (1, -1, -4, 0) and (2, 1, 1, 6) are linearly dependent in \mathbb{R}^4 .
- 4. Let W be a subspace of C³ over C spanned by $v_1 = (1, 0, i)$, $v_2 = (i, 0, 1)$. Prove that (i) v_1 , v_2 froms a basis of W (ii) $u_1 = (1 + i, 0, 1 + i)$, $u_2 = (1 i, 0, i 1)$ forms a basis of W. Also find then matrix of ordered basis B' = $\{v_1, v_2\}$.

Section - B

5. (a) State and prove Sylvester's law of nullity.

4

- (b) Prove that a linear transformation T is one-one if and only if Ker(T) = (0).
- (a) Show that a linear transformation T: V → W is non-singular iff T carries each linearly independent subspace of V onto linearly independent subspace of W.
 - (b) Let T be a linear operator on V and Rank (T^2) = Rank (T). Then show that the Range (T) (T
- 7. (a) Show that the minimal polynomial of

 $\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & -1 & 0 & 3
\end{bmatrix}$

is $x^4 + 3x^3 + x - 1 = 0$.

4

- (b) Let T be a linear operator on n dimensional space V. Then show that the characteristic and minimal polynomials for T have the same roots.
- 8. Let A be an n × n matrix over F. Show that A is invertible if and only if column of A are linearly independent over F.

Section - C

(Compulsory Question)

9. (a) Show that the union of two subspaces of a vector space may not be subspace.

(b) Show that $\{1,\sqrt{2}\}$ is linearly independent in R over Q.

- (c) Find two linear transformations T and U on R^2 such that TU = 0 but $UT \neq 0$.
- (d) Find the value fo k so that the vectors (1, -1, 3), (1, 2, -2) and (k, 0, 1) are linearly dependent.

- (f) Check whether a mapping T: $R^2 \rightarrow R$ defined by T (x, y, z) = $x^2 + y^2 + z^2$ is a linear transformation?
- Extent the set $S = \{1, 1, 1\}$ as a basis of R^3 . (g)

- (h) Find the co-ordinate vectors if \mathbf{v} in \mathbf{R}^3 relative to the basis $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$.
- (i)
- Show that E_1E_2 is a projection if $E_1E_2 = E_2E_1$ where E_1 and E_2 are projections. Show that the minimal polynomial of a linear operator T divides its characteristic polynomial. (j) $(10 \times 8 = 8)$