DISCRETE MATHEMATICS - II

Paper - IV Semester-VI

Time Allowed: 3 Hours] Note: Attempt five questions in all, selecting two questions from each Section A and B and the entire Section C. All questions carry equal nauks. Section - A Solve S(k) - 7S(k-1) + (k-2) = 0, S(0) = 4, S(1) = 17. 4 (a) 1. Find a closed form expression for the term of Fibonacci sequence. 4 (b) Solve 2. $S(k) - 4S(k-1) + 4S(k-2) = 3k + 2^k$, S(0) = 1, S(1) = 1. If S(k) - 6S(k-1) + 5S(k-2) = 0, S(0) = 1, S(1) = 2, what is the generating function of S. 3. G(S, z)? Find the sequence which satisfies it. Derive a second order linear relation for 4. $C(k) = 3^{k-1} + 2^{k+1} + k, k \ge 0.$ Explain algorithm of solving nth order linear homogeneous recurrence relations. (b) 4 Section - B Show that lattice L is a distributive iff 5. (a) $a \lor (b \land c) = (a \lor b) \land (a \lor c), \forall a, b, c \in L.$

Let $[B; -, \vee, \wedge]$ be any Boolean algebra of order 2.

(b)

[Maximum Marks: 40

B.	Sc. I	Part -III	(Paper-2017) Scm. v ∞ v1	
6.		(a) (b)	Let f: B ^k → B. Find the 16 possible functions. Prove that every chain is a distributive lattice. Define Switching Circuit? Give suitable example.	4 4 4
7		Find	out the operations tables and Hasse diagram for $\{B_2^2; -, \vee, \wedge\}$	
8		Also (a) (b)	Prove that the complement of every element in a Boolean algebra B is unique. Explain Design and implementation of digital Networks with example. Section - C	8 4 4
ç).	Writ	(Compulsory Questions) e short notes on the following:	
		(a)	Find telescoping form of $p(n) = 3n^4 + 2n^3 + 4n^2 - n + 7$?	
		(b) (c)	Write a short note on Recurrence relations. By the recursive definition of binomial coefficient, find C(5, 3).	
ď		(b)	Solve the recurrence relation $\sqrt{a_n} = \sqrt{a_{n+1}} + \sqrt{a_{n+2}}$.	
		(e) (f) (g)	Write a short note on analysis of algorithm-time complexity. Find the atoms of the following Boolean lattice (1, 2, 5, 10, 11, 55, 110). Define Boolean expressions?	
		(h)		
		(i)	Show that if n is a positive integer and p ² /n, where p is a prime number, then D _n is not	t a
		(j)	Find the complement of each element in D ₄₂ . (10×0.8=8	3)