		NUMBER THEORY - II (I)	
Time Note	: Atten	[Maximum Marks opt five questions selecting and questions each from Section A and B and the compion of Section C.	s : 40 ulsory
1.	(a) (b)	Section - A Show that the continued fraction which represents a quadratic surd is periodic. Show that there are no positive integral solutions of	4 4
2. ,	(a)	$x^4 + y^4 = z^2$. Show that	
N	N		

		$\prod_{n=0}^{\infty} \left\{ \left(1 - x^{5n+2}\right) \left(1 - x^{5n+3}\right) \left(1 - x^{5n+3}\right) \right\}$	
		$\prod_{n=0}^{\infty} \left\{ \left(1 - x^{5n+2}\right) \left(1 - x^{5n+3}\right) \left(1 - x^{5n+5}\right) \right\}$ $= \sum_{n=0}^{\infty} (-1)^n x^{\frac{1}{2}n(5n+1)}$	•
	(b)	Show that for any real number α , there exists a rational number $\frac{p}{q}$ such that $\left a-\frac{p}{q}\right <\frac{1}{q^2}$.	4
3.	(a)	Show that there exists integers x and y not both 0, for which $\xi^2 + \eta^2 \le \left(\frac{3}{4}\right)^{1/2} \Delta $.	4
4.	(b) (a)	State and prove Minkowski's theorem in Geometry of Numbers. State and prove Euler's recursion formula for $p(n)$, where $p(n)$ is the number of partition	ns 4
	(b)	of n. Show that he number of partitions of n into distinct parts is equal to number of partitio of n into odd parts by means of generating functions. Section - B	ns 4
5.	(a)	Show that the everage order of $\sigma_{\rm c}(n)$ is $\pi^2 n/12$.	4
5.	(b)	Prove that if a prime, $p \equiv 1 \pmod{4}$ hen we can write it as the sum of two integer square	es,
	;	i.e., $n = \lambda^2 + \lambda^2$, for some $\lambda_1, \lambda_2 \in \mathbb{Z}$.	4
6.	(a)	Show that the following relations are logically equivalent:	
		$\lim_{x\to\infty}\frac{\theta(x)}{x}=1 \text{ and } \lim_{x\to\infty}\frac{\psi(x)}{x}=1.$	4
	(b)	Let $f(n) = [\sqrt{n}] - [\sqrt{(n-1)}]$. Prove that f is multiplicative but not complete	ely
	(0)	multiplicative.	4
7.	(a)	Prove that	
		$\sum_{n=0}^{\infty} \frac{d(n)}{n} = \frac{1}{2} \log^2 x + 2C \log x + O(1), C \text{ is Euler's constant.}$	4
	(b)	State and prove Hermite's theorem on minima of positive definite quadratic forms.	4
8.	(a)	State and prove Abel's Identity.	•
	(b)	Show that $\psi(x) = \sum_{n \in \mathbb{N}} \theta(x^{1/m})$	
		where $\psi(x)$ and $\theta(x)$ are Chebyshev's functions.	4
		Section - C Define average order of an arithmetic function. Give average order of $\mu(n)$. (Do not prove)	1
9.	(a)	State Jacobi's Triple Product Identity.	i
7	(b) (c)	Give generating function for partitions into even and unequal parts.	1
•:	(c) (d)	Give the recurrence relation of Pentagonal numbers.	1
	(e)	State Hermite Theorem on quadratic forms.	1
	(ŋ -	Exhibit a solution of $x^2 - 13y^2 = 1$.	1/2
	(g) (h)	Define Binary quadratic forms with example. Calculate the highest power of 10 that divides 1000!	1/2 1/2
	(i)	For the Pell number, derive the relation, where $n \ge 1$; $p_n + p_{n-1} = q_n$.	1/2
-			.an 1/
	(j)	Is the function $f(n) = \frac{3n+17}{2n-1}$ is O(1), (where O-Big Oh notation)? Justify your answer	/er. 1/2