ADVANCED CALCULUS-I

Time	e: Th	ree Hours Maximum Marks:	
Note	: Att	empt one question each from Sections A, B, C and D and the entire Section E. All quest	lons
	carry	equal marks. SECTION-A	
	7-1		
Į.	(a)	State and prove Cantor Intersection Theorem.	
	(b)	Prove that the sequence (x_n) , where $x_n = \frac{2n-5}{3n+1}$ is a monotonically increasing and bou	nded
11.	(a)	above as well as below. The image of closed interval under a continuous function is a closed interval.	20
	(b)	Show that $f(x) = \frac{1}{x-a}$ is discontinuous at $x = a$. Locate the type of discontinuity.	20
		SECTION - B	
Ш.	Expa	and the following using Maclaurin's Theorem with Lagrange's form of Remainder:	20
	(a)	cos x (b) sin x	20
IV.	(a)	State and prove First Mean Value Theorem.	
	(b)	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by	
		$f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x} x, y \neq 0$	
	Prov	We that $LT_{(x,y)\to(0,0)} f(x,y) = 0$	20
		(x,y)→(0,0) SECTION-C	
		SECTION-C	
V.	(a)	State and prove Taylor's Theorem for function of two variables.	
	(b)	Discuss the differentiability of the function	
		$f(x, y) = (xy)^{1/3}$ at $(0, 0)$.	20
٧l.		d the maximum and minimum values of	
	$u = \sin x + \sin y + \cos (x + y).$		20

Maximum Marks: 100

SECTION-D

VII. (a) Test the nature of the following series:

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^p}, \, p > 0.$$

(b) State and prove Ratio Test.

VIII. (a) State and prove Dirichlet's Test.

(b) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$

SECTION-E

IX. Do as directed:

- (a) Prove that f(x) = 9x + 1 is uniformly continuous on [2, 3].
- (b) If f (x) is continuous in [a, b], then it is bounded in [a, b].
- (c) Define Bounded and Monotonic sequence with examples.
- (d) State Taylor's Theorem.
- (e) Define Partial Differentiation with example.
- (f) State Euler's Theorem on homogenous function.
- (g) Show that the function $f(x, y) = \cos x + \cos y$ is differentiable at every point.
- (h) Find the maximum or minimum of $u = 2(x y)^2$.
- (i) State Schwarz's Theorem.
- (j) Define Saddle point of function of two variables.

 $2 \times 10 = 20$

20

20