ADVANCED CALCULUS - I

Maximum Marks: 100 Time: Three Hours Note: - Attempt one question each from Section A, B, C and D carrying 20 marks each and the entire Section A consisting of 10 short answer type questions carrying 2 marks each.

Section-A

Let $A = \{(x,y): 0 < x < 1, x, y \mid R\}$ 1. Let $f: A \otimes R$ be defined as f(x, y) = x + y.

Show that by definition
$$\frac{Lt}{y \cdot \frac{1}{2}}$$
 $f(x, y) = \frac{1}{2}$

(b) If
$$z = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
, prove that
$$x^2 z_{xx} + y^2 z_{yy} + 2xy z_{xy} = (1 - 4 \sin^2 z) \sin 2z.$$
(c) Prove that

(c) Prove that "
$$e^{atx} \Gamma(x) = x^2 + x^3$$

$$e^{xx} \sin by = by + abxy + \frac{e^{atx}}{b} \left[\left(a^3 x^3 - 3ab^2 xy^2 \right) \right] \sin bty$$

6

2.	(a) (b)	where $0 < t < 1$ Show that of all the trinagles inscribed in a circle that one with maximum area equilateral.	ıi
	(b)	1 1 1	- (
	\- <i>'</i>	If $u^3 = xyz$, $\frac{1}{v} = \frac{1}{x} + \frac{1}{v} + \frac{1}{z}$ and $w^2 = x^2 + y^2 + z^2$,	
	•	prove that $\partial(u,v,w) = v(v-z)(z-v)(z-v)(z+v+z)$	
		$\frac{\partial(u,v,w)}{\partial(x,y,z)} = -\frac{v(y-z)(z-x)(x-y)(x+y+z)}{3u^2w(yz+zx+xy)}$	(
•	(c)	State and prove Taylor's theorem for 2 variables. Section-B	8
3.	(a)	Evaluate $\int_{R} (x+y)^2 dx dy$ Where P is the parallel comm in the any plane with wartings (1.0) (2.2) (0.1) with	•
	(b)	Where R is the parallelogram in the xy-plane with vertices $(1,0)$, $(3 3,1)$ $(2, 2)$, $(0, 1)$ usi transformation $u = x + y$, $v = x - 2y$. Find Centroid of the region R bounded by $z = 4 - x^2$ and planes $x = 0$, $y = 0$, $y = 6$, $z = 0$.	8
	(c)	Evaluate $\iint xy (x+y) dx dy$ over $y=x^2$ and $y=x$.	6
4.	(a)	Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ hence evaluate.	6
	(b)	Find volume of cylinder $x^2 + y^2 = 9$ and $x^2 + z^2 = 9$.	6
	(c)	Evaluate $\int_{S} \int \sqrt{xy-y^2} dx dy$, where S is a triangle with vertices (0, 0), (10, 1) a	nd
		(1, 1) Section-C	8
5.	(a)	If \vec{F} is a solenoidal vector, show that	
	(b)	curl. curl. curl. curl $\vec{F} = \tilde{N}^4 \vec{F}$ Verify divergence theorem for $\vec{A} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$, taken over the region bound by $x^2 + y^2 = 4$, $z = 0$ and $z = 3$.	6 led 10
	(c)	What is the greatest rate of increase of $f = x^2 + yz^2$ and (1, -1, 3)?	4
6.	(a)	Show that $\nabla^2 \left(\frac{x}{r^3} \right) = 0$, where $r = \sqrt{x^2 + y^2 + z^2}$	4
	(b)	Verify Stoke's theorem for $\vec{F} = y\hat{i} - 2\hat{j} + x\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$, and C is its boundary.	the 10
N	(c)	Evaluate $\int x dy - y dx$, around the circle $x^2 + y^2 = 1$	6
7.	(a) (b)	Section-D Prove that set of all real numbers is uncountable. State and prove Heine Borel theorem.	10 10
8.	(a)	Show that $f(x) = x^2$ is uniformly continuous on $(0, 1]$.	10

Prove that every infinite set contains a countable set.
Section-E

Do as directed.

(a) If
$$z = e^{ax + by} f(ax - by)$$
, find $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y}$

- State and prove theoram on Homogeneous functions. (b)
- Find total derivative of tan⁻¹ $\frac{y}{x}$. (c)

(d) Evaluate
$$\int_{0}^{1} \int_{0}^{3} (x+1) dy dx$$

- Write formula for the C.G. $(\overline{x}, \overline{y}, \overline{z})$ of a solid. (c)
- Find angle between the tangents to the curve $\vec{r} = t^2 \hat{i} + 2t \hat{j} t^3 \hat{k}$ at points $t = \pm 1$. (f)
- Show that $\vec{A} = 3x^2y\hat{i} + (x^3 2yz^2)\hat{j} + (3z^2 2y^2z)\hat{k}$ is irrotational. (g)
- (h) Prove that curl. grad $\overline{v} = 0$
- Define Adherent point. Define partition of a set.

 $(2 \times 10 = 20)$