
DIFFERENTIAL EQUATIONS-II

Note: Attempt one question each from Sections A, B, C and D carrying 20 marks each, and, the entire Section E is compulsory consisting of 10 short answer questions carrying 2 marks each.

Time: Three Hours

Solve in series $x^2 \frac{d^2y}{dx^2} + x \cdot \frac{dy}{dx} + (x^2 - 4) = 0$. (10)I. Prove that $e^{\frac{h}{2}(\frac{1}{1})}$ is a generating function of Bessel's function. (10)Find the Eigenvalues and Eigenfunctions of Sturm Liouville's problem $\frac{d^2y}{dx^2} + \lambda y = 0$ II. (10)y(0) = 0 and $y(\alpha) = 0$ Prove that (b) $\frac{d}{dx}$ F (1, m, p;x) = $\frac{lm}{p}$ F (P + 1, m + 1, p + 1; x). (5) Express $5x^2 - 3x + 6$ in terms of Legendre's polynomial. (5) Find the general solution of partial differential equation $r - q = e^{x+y}$. (10)III. (a) Solve for complete solution $(p^2 + q^2)$ y = qz by Charpit's method. (10)Solve the partial differential equation IV. $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} + 3 \frac{\partial z}{\partial y} = 2z + e^{x-y} - x^2 y.$ (10)Solve $p^2 + q^2 - 2px - 2qy + 1 = 0$. SECTION-C (10)Find the extremal of the functional $\int_0^{\frac{x}{2}} (y'^2 + z'^2 + 2yz) dx$. Given that y (0) = 0, $y\left(\frac{\pi}{2}\right) = 1$, z(0) = 0, $z\left(\frac{\pi}{2}\right) = -1$ (10)

Maximum Marks: 100

(x) Prove that $J_{1/2}^2(x) + J_{1/2}^2(x) = \frac{2}{x}$.

Scanned by CamScanner

 $2 \times 10 = 20$