
| ۲, |
|----|
| ▆  |
| =  |
| 0  |
| Ē  |
| _  |
| =  |
| ᠬ  |
| Ö  |
| 0  |
| 3  |
|    |

|          | Roll No Total No of Pages: 7                                                                                                       |
|----------|------------------------------------------------------------------------------------------------------------------------------------|
| 7        | 4E4172                                                                                                                             |
| E4172    | B. Tech. IV Sem. (Main/Back) Exam., June/July-2014<br>Electrical Engg.                                                             |
| 4F       | 4EE2A Circuit Analysis-II                                                                                                          |
| Time: 3  | Hours Maximum Marks: 86 Min. Passing Marks: 2-                                                                                     |
| Instruct | ions to Candidates:-                                                                                                               |
|          | Attempt any five questions, selecting one question from each unit. Al                                                              |
|          | Questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing sumably be assumed and |
|          | stated clearly. Units of quantities used/ calculated must be stated clearly.                                                       |
|          | Use of following supporting material is permitted during examination.                                                              |
|          | (Mentioned in form No. 2003)                                                                                                       |
| l        | NIL 2. NIL                                                                                                                         |
|          | <u>UNIT – I</u>                                                                                                                    |
| Q.1. (a) | Illustrate the importance and advantage of complex frequency. [8                                                                   |
| (b)      | Determine equivalent capacitance a cross terminal (a-b) in Fig. 1. Also find the                                                   |
|          | charging time to charge these capacitances by a steady direct current of constar                                                   |

[13980]

[8]

magnitude of 10A.



- Q.1. (a) Differentiate between transform impedance and admittance of a network. [8]
  - (b) Find the equivalent resistance across x of the circuit shown is fig. 2. [8]

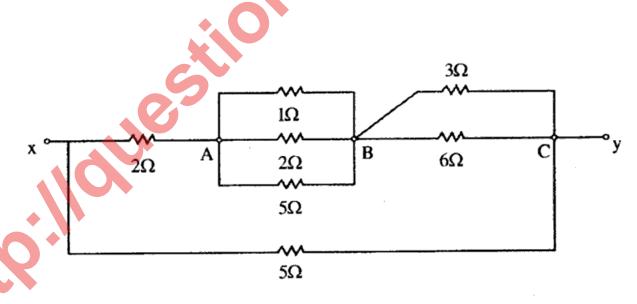



Fig.-2

## <u>UNIT – II</u>

Q.2. (a) Find  $Z_{11}(S)$ ,  $Z_{21}(S)$  in the following circuit shown in fig. 3.



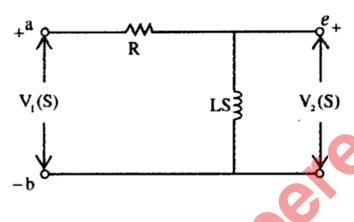



Fig. -3

(b) Find the pole zero locations of the current transfer ratio I<sub>2</sub>/I<sub>1</sub> in S-domain for circuit shown in fig. 4.
[10]

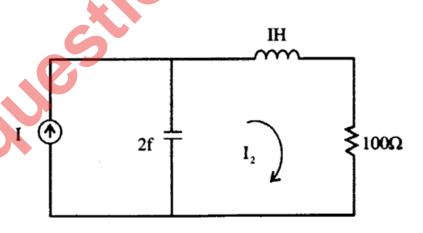



Fig.-4

Q.2. (a) Obtain the pole zero diagram of the given function and obtain time domain

response. 
$$I(S) = \frac{2S}{(S+1)(S^2 + 2S + 4)}$$
 [10]

(b) Find the transfer function of network shown in fig. 5

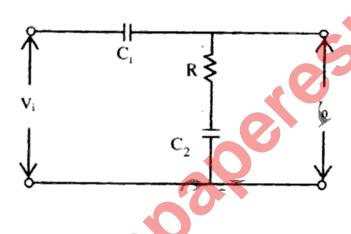



Fig. -5

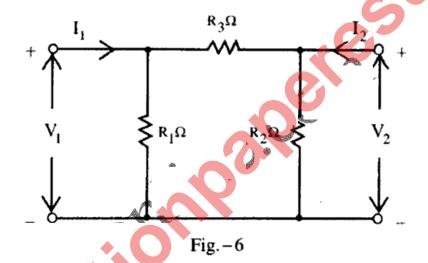
## UNIT - III

Q.3. (a) Test whether the polynomial  $S^5 + S^3 + S$  is Hurwitz or not.

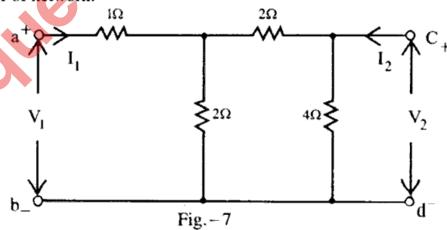
(b) A driving point impedance is given by 
$$Z_{LC}(S) = \frac{S(S^2 + 4)(S^2 + 6)}{(S^2 + 1)(S^2 + 5)}$$
 Obtain the

[10]

<u>OR</u>


Q.3. An impedance is given by 
$$Z(S) = \frac{8(S^2 + 1)(S^2 + 3)}{(S^2 + 2)(S^2 + 4)}$$

Realise the network in Foster - I, II and Caver - I, II form.

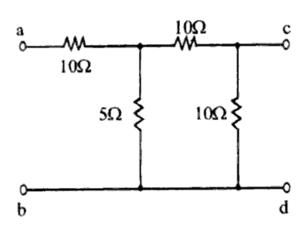

(161

## UNIT - IV

Q.4. (a) Determine the Z-parameters for a  $\pi$  - type attenuator section (fig. 6) [8]



(b) Find out ABCD parameters of network shown in fig.7. Also find image parameter of network. [8]




[4E4172]

Page 5 of 7

[13980]

Q.4. (a) Two networks have been shown in fig. 8. Obtain the transmission parameters of resulting circuit when both circuits are in cascade.



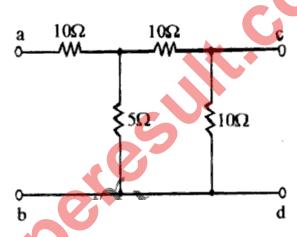



Fig. -8

(b) How Z- parameters are represented in two port network analysis.

[6]

[6]

## **UNIT-V**

- Q.5. (a) Illustrate Barlett's bisection theorem with suitable example.
  - (b) Design an m-derived high pass filter having a design impedance of 600Ω, cut off frequency of 5 kHz and m = 0.35. Also determine the frequency of infinite attenuation.
    [10]

<u>or</u>

Q.5. (a) Design a low pass composite fitter to operate with a design impedance  $500\Omega$ , m = 0.2 and cut off frequency = 2000Hz [8]

[13980] [4E4172] Page 7 of 7