Mathematical Statistics - III(ii)

Note: Attempt one question each from section A, B, C and D Section E (Question No. IX) is compulsory. Use of scientific calculator is permitted. Section-A

Time: Three Hours

Ш.

(a)

Five persons are chosen at random from a group containing 3 men, 2 women and 4 children. Find the chance that exactly two of them are children.

(6)
A and B play alternately with a pair of coin, the first to get both heads wins the game. If A starts the first throw, find their chances of winning.

Find the m.g.f. of a random variable X with density function as I. (a) **(b)** (c) $2e^{-2x}$, $x \ge 0$ (7)x < 0A randowm variable X has probability density given by II. (a) $3x^2$, $0 \le x \ge 1$ ത്ര otherwise Then find $E(X^2)$ The probability of a bad reaction from a certain injection is 0.001 Determine the chance that out of 2000 individuals more than two will get a bad reaction. (7) A random variable x is normally distributed with mean 12 and variance 4. Determine P(9.6 < x < 13.8)**(b)** (c) A = 0.3159; x/s = 1.2, A = 0.3849) (7) Section-B
A box contains 3 blue and 2 red marbles, while another box contains 2 blue and 5 red

Maximum Marks: 100

	4.5	marbles. A marble is the probability the If X and Y are two	is drawn at rando at it came from t	m from one o	of the boxes an	d found to be	red. What	
	(b)	$f(x, y) = \begin{cases} c(2x - 1) \\ 0 \end{cases}$	random variables $+ y$, $0 \le x 2$,	s having joins $0 \le y \le 3$	t prqbability fu	nction as	U.A.	
		[0,	elsewher	e				
IV.	(a)	Find conditional expectation of Y for $X = 2$ Let S_{200} be the number of heads that turn up in 200 tosses of a fair coin. Use the Central Limit Theorem to estimate $P(S_{200} = 90)$						
	(b) Let X is normally distributed with mean m and variance s ² . Using Chebyshev's							
	inequality, find an upper bound for the probability $P(X-\mu \ge 3\sigma)$ Section-C							
V.	(a) (b)	Using Iteration met Using Newton-Raph places.	hod, find a real ro son formula, find	oot of 2x - log a real root of	$\lim_{x \to \infty} x = 7 \text{ correct}$	t upto 4 decine 0 correct upto	nals. (10) 4 decimal	
VI.	(a)	Solve using Triangu $x + y + z = 3$,	larization metho	d		((10)	
(b)	Solve u	2x - y + 3z = 16, 3x + y - z = -3 using Gauss Seidel n	nethod	0			(10)	
		3x + 2y + z = 5, 2x + 5y + z = -3, 2x + y + 3z = 11					(10)	
VII.	(a)	Obtain the missing	term in the follow	ion-D ving table :		•••		
<i>a</i> .\	f(x)	: 100	2.00432	102	103 2.01284	104 2.01703	(10)	
(b)	α	te f(9) using Bessel's : 0 1.5708	5	10	15	20 1.6200	(10)	
VIII.	f(α) (a)	Calculate log (41) fi	1.5738 rom the data 42	1.5828 45	1.5981	1.0200	(10)	
	logx	1.60206	1.52324	1.65321				
(b)	log x	1.68124 te the value of tan (0	1.69019	1.69897			(10)	
x tan x		0.10	0.15 0.1511	0.20 0.2027	0.25 0.2553	0.30 0.3093	(10)	
Section-E								
(Compulsory question) IX. Answer in brief:								
(a)	on the second toss.							
(b)	Define Gamma random variable. Explain the properties of Correlation coefficient.							
DOBOG DOBOG	Explain the properties of Correlation coefficient. Explain the concept of Uncertainty. Write demerits of Newton-Raphson method. Explain the concept of Complete pivoting.							
(I) (g)	Explain	$e^{\Delta^3(1-x)(1-2x)}$	(1-3x)			16.		
(h)		tirling formula	/ /			_ ((8×2½=20)	