NUMBER THEORY - III Opt. (i)

Time: Three Hours

consi	isting	of 8 sh	ort answer type questions carrying 20 marks in all is compulsory.
	I.	(a) (b)	Section-A State and prove fundamental Theorem of Arithmetic. A man has 987 orenges. In how many ways can he distribute these among 13 women and 5 children, if all women receive equal number of oranges and all children equal
		(c)	number of them? If a is any integer and n is a positive integer such that $(a, n) = 1$, then prove that $a^{\phi(n)} \equiv 1 \pmod{(n)}$.
	П.	(a)	If a is selected at random from $\{1, 2, \dots, 14\}$ and b is selected from $\{1, 2, \dots, 15\}$ what is the probability that ax \equiv b (mod 15) has at least one solution?
		(b)	If $d(n)$ denotes the number of positive divisors of $n > 1$, then prove that product of positive $d(n)$
		(c)	divisors of n is $n^{\frac{2}{2}}$. What is the remainder when 3^{287} is divided by 23 ? Section-B (10,5, 5)
	m.	(a)	Let F and f are two Arithmetic functions, for every integer n, if $F(n) = \sum_{d/n} f(d)$ then
			prove that $f(n) = \sum_{d/n} \mu(d) F\left(\frac{n}{d}\right)$
	(b)	If a ha	s order h modulo m, then a^k has order $\overline{(h, k)}$ modulo m, where k is a positive integer.
T.			(12.8)
	IV.	(a)	Let (a, m)= 1, then a is a primitive root of m if and only if $a^{\frac{\phi(m)}{p}} \neq 1 \pmod{m}$ for
		(b)	every prime divisor p of φ(m). State and prove Gauss's Lemma. Section-C (10, 10)
	V.	(a)	Prove that the value of a continued fraction is less than every even convergent and greater than every odd convergent.
		(b)	Find the successor term of $\frac{28}{29}$ in F_{3451} .
	VI	(c) (a)	Find all solutions of $x^2 + y^2 = z^2$ such that $0 < z < 30$. (10,5,5) Show that every rational number can be expressed as a finite simple continued fraction.
		(b)	Show that two consecutive terms of $F_n(n^1)$ cannot have two same denominators.
1		(c)	Expand $\sqrt{3}$ as infinite continued fraction. (10,5,5)

[Maximum Marks: 100

Sec	ti	n	n	_	n
3 EC	u	u		_	•

- Prove that all forms of discriminant -7 are equilant Hence show that an odd prime p^1 is representable by $x^2 + xy + 2y^2$ if and only if p = 7 or p = 1, 2 or 4 (mod 7) VIL (a)
 - Prove that average order of s(n) is **(b)** (12,8)

VIII. (a) Prove that the following relations are equivalent.

(i)
$$\operatorname{Lim}\left(\frac{\pi(x)\log x}{x}\right) = 1 \text{ as } x \to \infty$$

(ii)
$$\lim \left(\frac{\theta(x)}{x}\right) = 1 \text{ as } x \to \infty$$

- (iii)
- Prove that no integer of the gorm 8k + 7 can be expressed as sum of three square.

 Section-E **(b)**

Do as directed IX.

(a) Shwo that
$$\left\lceil \frac{a}{b} \right\rceil = \left\lceil \frac{a}{b} \right\rceil$$
, where stands for integral pert function. (2)

- (g)
- State Chinese Remainder Theorem
 Find all integer n for which n + n + 41 is a perfect square
- Let s(n) = sum of divisors of n. Show that s(n) is multiplicative. (d)
- (3)(e) Evaluate
- State Euler's Summation Formula
 Find all quadratic residues of 11
 Define Partition and list all partitions for n = 4