ANALYSIS-II

Paper-V (Semester-IV)

Time Allowed: Three Hours
Note: Attempt two questions each from Sections A and B carrying 5½ marks each, and the entire Section C consisting of 7 short answer type questions carrying 2 marks each.

- I. (a) Prove that a monotonically decreasing sequence $\{a_n\}$ converges if and only if it is bounded below. The limit of $\{a_n\}$, when it converges, is the greatest lower bound of $\{a_n\}$.
 - (b) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{a^n}{a^n + x^n}$ where x > 0, a > 0.
- II. (a) Apply Cauchy's General Principle of convergence to show the convergence of the sequence $\{a_n\}$ where $a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{(n-1)^2} + \frac{1}{n^2}$
 - (b) Discuss the convergence of the series $\sum_{n=0}^{\infty} \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots \frac{(2n-1)}{n^{\alpha}} \cdot \frac{1}{n^{\alpha}}$ where α is constant.
- III. (a) Prove that every sequence contains a monotone subsequence.
 Show that for the series
 - $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{2^3} + \frac{1}{3^4} + \dots$ Cauchy's Root Test indicates convergence, while D'Almert's Ratio Test is Inconclusive.
- IV. (a) Let $\{a_n\}$ be a sequence of positive real numbers such that $a_{n+1} = (a_n + a_{n-1})$ for all $n \ge 2$. Then prove that $\{a_n\}$ converges to $(a_1 + 2u_2)$.
 - (b) Prove that the series $x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots$ is convergent for $-1 \le x \le 1$. 2½ SECTION-B
- V. (a) Test the sequence $\left\{\frac{nx}{1+n^2x^2}\right\}$ for uniform convergence on the interval [0 1]. 3
 - (b) If $na_{n\to 0}$ and $f(x) = \sum a_n x^n \to s$ as $x \to 1$, then $\sum a_n$ converges to the sum s. 2½
- VI. (a) Test the series $\sum \frac{nx}{1+n^2x^2} + \frac{(n-1)x}{1+(n-1)^2x^2}$ for uniform convergence and continuity

of	the	sum	function	for all	values	of x.
•		54111	i di i e ti o i i	101 1111	undes	OI AL

Show that $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + ...$ for $-1 \le x \le 1$. Also deduce that

 $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ 21/2

- VII. Test the sequence {xe-nx} for uniform convergence on the interal [0 1]. 3
 - (b) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with unit radius of convergence nad let f(x) = 1 $\sum_{n=1}^{\infty} a_n x^n, -1 < x < 1.$ If the series $\sum a_n$ converges then prove that $\lim_{x \to 1} f(x) = \sum a_n$.

Show that $\int_0^{\infty} \log(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{(n+1)}}{n(n+1)}$ for |x| < 1. VIII.

- Examine for term by term integration the series $\sum x^{n-1} (1-2x^n)$ for $0 \le x \le 1$. $2\frac{1}{2}$ Discuss the convergence of the series $\sum r^{\log n}$ where r > 0. Find the radius of convergence and interval of convergence of the series $\sum x^{n-1} = x^n$ IX. $\sum_{n=2}^{\infty} (n-2)! x^{n-2}$
 - Prove that $\lim_{n \to \infty} n \sqrt{n} = 1$. (c)
 - Show that $\frac{n}{a^n}$ is a null sequence where $\alpha > 1$. (d)
 - If $a_n = 1 + \frac{(-1)^n}{2n}$ find a positive integer m such that $|a_n 1| < \frac{1}{10^3}$ for all $n \ge m$. (e)
 - Discuss the convergence or divergence of the series $\sum \sqrt{n^2 + 1} n$.
 - Show that the series $\sum \frac{x^n}{n!}$ converges absolutely for all x.