ALGEBRA

Paper-I Semester-V

Tir	ne Allo	owed: 3 Hours] Maximum Marks:	51/
	4 7	The see did to an acquired to attempt two questions each from Sections A and D can ying	⊃% ~ ?
	· ·	marks eachand the entire Section C consisting of 7 short answer type questions carrying	g 2
	-	marks each.	
		SECTION-A	_
1.	(a)	Show that if G is group in which $(ab)^n = a^n b^n$ for three consecutive integers n and a, b \in	Ġ,
1.	(4)	then G is abelian.	21/2
	(b)	State and prove Cayley's theorem	3
^		Prove that for any positive integer n the set C of all n x n matrices over the complete	lex
2.	(a)	numbers form an infinite abelian group under matrix addition as binary composition.	21/2
		Show that G={1,2,3,4} forms a cyclic group under multiplication modulo 5.	3
_	(b)	Prove that Quotient group of a cyclic group is cyclic.	3
3.	(a)	If H, K are normal subgroups of a group G and HCK, then K/H is a normal subgroup of G/H.	21/2
	(b)	If $O(G) = p^2$, where p is a prime number, then G is abelian.	3
4.	(a)	Prove that A has no subgroup of order six	21/2
	(b)	Prove that A, has no subgroup of order six. SECTION-B	
_		Prove that any field is an integral domain.	21/2
5.	(a)	Flowed I be any two ideals of ring R then II is an ideal of R moreover IJ $\subset I \cap J$.	
_	(b)	An ideal P of a commutative ring R is a prime ideal iff R/P is an integral domain.	3 3
6.	(a)	If I and J are two ideals of ring R and $I \subseteq J$, then J/I is ideal of R/I.	21/2
·-	(b)	State and prove Fundamental theorem on Ring homomorphism.	3
7.	(a)	prove that every irreducible element of PID is a prime.	21/2
	(b)	If R is an integral domain and a is irreducible element of R, then a is also irreducible element	ent
8.	(a)		21/2
		of Kinji annua Cours's lamma	3
	(b)	State and prove Gaass's formula.	•
			:11
9.	Atte		14
	(i)	Show that $x^3 - [9]$ is irreducible over 31.	
		Find the units of ring [i].	
	(iii)	Define Nilpotent ideal and give an example of Nilpotent ideal.	
	(iv)		
	` .'	A' an avamble of integral comain which is to a ticlo.	
	7(1	prove that intersection of two normal subgroup of G is a normal subgroup of G.	
	>(State Lagrange's theorem. Converse of Lagrange's theorem is true for cyclic group or no	ot.