Roll No \_\_\_\_\_ Exa

## **Examination May-2014**

Total no of page-1

HEAT TRANSFER (ME – 303)
Paper ID-A0815

Time Allowed: 3 Hours Max. Marks: 60

**Section A**(Compulsory)

[Marks: 02 each]

- Q1. a) Define apparent thermal conductivity.
  - b) What is meant by critical thickness of insulation?
  - c) Define Fourier's law.
  - d) Write general heat conduction equation in cylindrical coordinates.
  - e) Define thermal diffusivity. What is its physical significance?
  - f) What is the value of shape factor in case of concentric cylinders?
  - g) Define Prandtl Nuber, Stanton number and Nusset number.
  - h) Define fin effectiveness. What parameters should be considered for fin to be effective?
  - i) Draw velocity profile and temperature profile in case of flow over flat plate.
  - j) What is a heat exchanger? How they are classified?

Section B(Attempt any four) [Marks: 05 each]

- Q2. Derive relation for heat dissipation from an infinitely long fin. Also write design considerations for fins.
- O3. Derive three dimensional heat conduction equation in cylindrical coordinates.
- Q4. Derive the relation for radiation heat exchange in case of non black bodies assuming no medium between them.
- Q5. What is meant by lumped capacity? What physical dimensions are required to apply lumped unsteady state analysis?
- Q6. Derive Effectiveness-NTU relation in case of counter flow heat exchanger.

Section C(Attempt any two) [Marks: 10 each]

- Q7. The rate of heat generation in a slab of thickness 160 mm (k= 180 W/m<sup>0</sup>C) is 1.2 x 10<sup>6</sup> W/m<sup>3</sup>. If the temperature of each of the surface is 120<sup>o</sup>C, determine:
  - (i) The temperature at the mid and quarter plane.
  - (ii) The heat flow rate and temperature gradients at the mid and quarter planes.
- Q8. The furnace of a steam boiler is composed of two layers, inner refractory wall and outer insulating wall. Temperature of gases in the furnace is 1300°C and the temperature of air in the boiler room is 30°C. The thickness of refractory material is 250 mm. The heat transfer coefficient from gases to refractory wall is 30 W/m²°C and heat transfer coefficient from outer layer to surrounding air is 10 W/m²°C. Estimate the thickness of the outer insulating layer so that the loss of heat to the surroundings should not exceed 750 W/m² if:

 $k_{\text{refractory}} = 0.28 (1 + 0.000833 \text{ t}) \text{ W/m}^{0}\text{C}$ 

 $k_{outer} = 0.113 (1 + 0.000206 t) W/m^{0}C$ 

- O9. Write short notes on:
  - a) Types of condensation.
  - b) Plank's law of monochromatic radiation.
  - c) Newtonian heating and cooling of solids.

