## ALGEBRA AND CALCULUS-II

Time Allowed: Three Hours | [Maximum Marks: 100 Note: The candidates are required to attempt one question each from Sections A, B, C and D carrying 20 marks each and the entire Section E consisting of 8 short answer types questions carrying 2½ marks each.

marks each.

Section - A

1. (a) Find value of \( \) for which \( y = x + - 6x^2 + 12x^2 + 5x + 7 \) is concave upwards or downwards. Also determine the point of inflexion.

- Find  $y_n$  if  $y = \frac{1}{x^2 + a^2}$ . (b)
- 2. (a) Find radius of curvature at any point of the curve  $x^{2/3} + y^{2/3} = a^{2/3}$ . Trace the curve  $x^3 + y^3 = 3axy$ ,  $a \ge 0$ .
  - (b)

- 3. Find Reduction formula for  $\int \cot^n x \, dx$ . (a)
  - Find length of Boundary of Region bounded by the curve (b)  $y = \frac{1}{2}x^2 + 1$  and the lines y = x, x = 0 and x = 2. State and prove DIRICHLET's TEST for Convergence at  $\infty$ .
- 4. (a)
  - Show that  $\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}}$ (b)

- For the matrix  $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$ ; find the Invertible Matrix P, such that P-1AP is a diagonal 5. (a)
  - (b) Find the values of x suchthat the rank of matrix

$$\begin{bmatrix} 3x-8 & 3 & 3 \\ 3 & 3x-8 & 3 \\ 3 & 3 & 3x-8 \end{bmatrix}$$
 is  $\leq 2$ . Also find rank for these values of  $x$ .

- State and prove Cayley–Hamilton theorem, using it find inverse of  $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 2 & 0 \\ 2 & -1 & 0 \end{bmatrix}$ . (a) 6.
  - Find the values of  $\lambda$  and  $\mu$  so that system of equation (b) 2x - 3y + 5z = 12

$$2x - 3y + 5z = 1$$
  
 $3x + y + \lambda z = \mu$   
 $x - 7y + 8z = 17$ 

has:

- a unique solution
- (ii) Infinite solution

no solution.

Section - D If  $\alpha$  and  $\beta$  be the roots of  $x^2 - 2x + 4 = 0$ , prove that (a) 7.

(i) 
$$\alpha^{n} + \beta^{n} = 2^{n+1} \cos \frac{n\pi}{3}$$
 (ii)  $\alpha^{6} + \beta^{6} = 128$ .

(ii) 
$$\alpha^6 + \beta^6 = 128$$

If  $a^{\alpha+i\beta} = (x + iy)^{p+ib}$ , then prove that (b)

$$\alpha = \frac{1}{2} p \log_a (x^2 + y^2) - q \tan^{-1} \frac{y}{x} \log_a e$$
 and

$$\log_a (x^2 + y^2) = 2 \log \frac{p\alpha + q\beta}{p^2 + q^2}$$

- Use CARDAN's method to solve:  $2x^3 - 7x^2 + 8x - 3 = 0$
- Change the equation  $2x^5 + 3x^3 + 4x^2 1 = 0$ , into in which coefficient of leading terms is (b) unity and coefficient of other terms remains integers.



- 9. Do as directed:
  - Determine nature of double roots at origin for  $x^2(x-y) + y^2 = 0$ . Show that the parabola  $y^2 = 4ax$  has no asymptotes.
  - (b)
  - Evaluate  $\int_{0}^{2\pi} (\sin x)^{2/3} (\cos x)^{-1/2} dx$ . (c)
  - Test convergence of  $\int_{0}^{1} \frac{\sin(1/x)}{\sqrt{x}} dx$ . Show that sing it (d)
  - (e) Show that sin z is periodic of period  $2\pi$ .
  - (f) Prove that if  $\lambda$  is Eigen value of A, ten  $\lambda^m$  is Eigen value of  $A^m \forall m \in \mathbb{N}$ .
  - Discuss Nature of roots of  $x^3 6x^2 + 9x 2 = 0$ , Locate them. Define Rank of Matrix and its one significance.