CALCULUS-I

Semester - I

The candidates are required to attempt two questions each from Section A and B carrying

5½ marks each and the entire Section C consisting of 7 short answer type questions

Time Allowed: 3 Hours]

Note:

carrying 2 marks each.

Section - A

What is an asymptote? Find he horizontal as well as the vertical asymptotes of the curve y

=\frac{x+3}{x+2}.

What is a point o inflexion? Show that the cubic curve y = \frac{x^3}{6} - \frac{x^2}{2} + x has one point of inflexion and find hat point.

Sketch the polar curve r = 2a cos 20.

Sketch the circle of curvature and find he curvature of the helix.

[Maximum Marks: 36

		Section - B	
	5.	Evaluate $\int 2^{-x} \tanh 2^{t-x} dx$.	51/2
	6.	Show that $\lim_{r\to\infty} \int_0^r \frac{dx}{x^2+4} = \frac{\pi}{8}$.	51/2
۵	7.	Show that the series $\sum \frac{(-1)^{n-1}}{n \log_e^2 n}$ is absolutely convergent.	51/2
4.	8.	For the Beta function B (u, v), prove that B (u, v) = $\frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}$, where Γ is function.	the Gamma
	9.	Attempt in short: (i) What are the asymptotes of $y = \sec x$? (ii) State the 2^{nd} derivative test for concavity. (iii) Give an example of a raph which on any interval is concave up. (iv) What is a carbdioid? Draw a cardioid. (v) Is $\int_{1}^{\infty} \frac{dx}{1+x^2}$ convergent? Justify. (vi) Use the substitution $2x = 7$ to evaluate $\int_{0}^{\infty} x^6 e^{-2x} dx$. (vii) State Abel's limit theorem for convergence of a power series.	7×2=14

 $r(t) = (a \cos t) \vec{i} + (a \sin t) \vec{j} + bt \vec{k}$ a, b, ≥ 0 and $a^2 + b^2 \neq 0$.