COORDINATE GEOMETRY-III

Semester - I

Time A	Allowed: 3 Hours] [Maximum Marks: 36
Note:	
	Section - A
1	The two tangents from a point P to the parabola $y^2 = 4ax$ make the angles α , β with x axis. Find the locus of P when.
2.	(i) $\tan \alpha + \tan \beta$ is constant. (ii) $\tan^2 \alpha + \tan^2 \beta$ is constant. 5½ Prove that the locus of the points such that two of the three normals to the parabola $y^2 = 4ax$ from them coincide is $27ay^2 = 4(x - 2a)^3$.
3.	Show that segment of the tangent to a parabola cut off between the directrix and the curve subtends a right angle at the focus of the parabola 5½
4.	Prove that the semi-latus rectum of a parabola is the harmonic mean between the segments of a

focal chord.

Section - B

- 5. Prove that the normal at any point of an ellipse bisects the angle between the focal distances (i)
 - Prove that the eccentric angles of the extremities of two conjugate diameters of an ellipse (ii) differ by a right angle.
- If A and B are the extremities of the conjugate diameters on an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then show 6.

that the tangents at A and B meet on the elliplies $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$ and that of the locus of the middle

point of AB is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$.

- 7. A circle cuts the rectangular hyperbola xy = 1 in the points (x_r, y_r) where r = 1, 2, 3, 4. Prove that
- $x_1x_2x_3x_4 = y_1y_2y_3y_4 = 1$.

 Prove that the locus of the middle points of normal chords of the rectangular hyperbola $x^2 y^2 = a^2$ is $(v^2 x^2)^3 = 4a^2x^2v^2$. 8. Section - C

9. Do as directed:

What is director circle? Find equation of Director circle of the ellipse $9x^2 + 25y^2 = 225$.

Find the asymptotes to the hyperbola:

- $3x^2 5xy 2y^2 + 5x + 11y 8 = 0$ Find the equation of the normal to the parabola $y^2 = 12x$ which is perpendicular to the line (iii) x - 3y + 6 = 0
- The normal at a point t, on the parabola $y^2 = 4ax$ meets it again at the point t_a. (iv)

Find k so that kx - y = 1 is a normal to the conic $x^2 + y^2 = 1$. Find the eccentricity of the hyperbola: $16(x-1)^2 - 9(y-2)^2 = 144$. Find the curve whose parametric equations are $x = e^t + e^{-t}$, $y = e^t - e^{-t}$. $7 \times 2 = 14$