DIFFERENTIAL EQUATIONS - II

		Semester - 1
Time A	llowe	d: 3 Hours] [Maximum Marks: 36
Note:	The c	andidates are required to attempt two questions each from Section A and B carrying 5.5.
		marks each and the entire Section C consisting of 7 short answer type questions carrying
		2 marks each.
		Section - A
ı	(a)	Find the differential equation of the family of curves $(x - h)^2 + (y - k)^2 = r^2$, where h and k are arbitrary constants.
	(b)	Solve the differential equations $(D^4 + 2D^2 + 1)y = x^2 \cos x$, where $D = \frac{d}{dx}$.

dx Solve $(D^s - D)$ y = 12 e^s + 8 sin x - 2x. Find the necessary and sufficient condition that the equation Mdx + Ndy = 0 (where M and 2. (a) (b)

N are the functions of x and y with the condition that M, N, $\frac{\partial M}{\partial y}$, $\frac{\partial N}{\partial x}$ are continuous

functions of x and y) may be exact. Discuss the Method of Variation of Parameters. Solve $(x^2y^2 + xy + 1)y dx + (x^2y^2 - xy + 1)x dy = 0$. 3. (a) (b)

Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2)\frac{dy}{dx} - 3y = x^2 + x + 1$. (a) 4. 2.5

By the Method of Changing the Independent Variable, solve : (b)

Section - B

(a) Use operator method to find the general solution of the linear system
$$\frac{dx}{dt} + \frac{dy}{dt} - x - 3y = e^t$$

$$\frac{dx}{dt} + \frac{dy}{dt} + x = e^{3t}.$$

Solve in the power series about x = 2 the equation : (b)

$$\frac{d^2y}{dx^2} + (x-1)\frac{dy}{dx} + y = 0.$$

6. (a) Find the general solution of the linear system:

$$\frac{dx}{dt} = 5x - y, \frac{dy}{dt} = 3x + y.$$

(b) Solve in series
$$2x \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} - 2y = 0$$
, about $x = 0$.

7. (a) Show that
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
. 2.5

Prove that $(1-2x K + K^2)^{-1/2}$ where $|x| \le 1$, |K| < 1 is a generating function for Legendre (b)

polynomials
$$P(x)$$
.

(a) Prove that $J_n(-x) = (-1)^n J_n(x)$ if n is any integer.

(b) Prove that
$$\int_{-1}^{1} x P_{n-1}(x) P_n(x) dx = \frac{2n}{4n^2 - 1}$$
.
Section - C

9. Write in short:

Define Integration Factor of a differential equations.

Solve $(D^3 + 1)y = 3 + e^{-x}$.

Using Wronskian, show that x, e', x e', (2-3x) e' are linearly dependent, for any real x.

Define ordinary and singular points of a differential equation.

Show that $J_{\mu}(x)$ is convergent for all x. Express $x^4 + x^3 + x^2 + 8x - 3$ in terms of Legendre's polynomials.

(g) Show that
$$J_0^2 + 2(J_1^2 + J_2^2 + \dots) = 1$$
. $2 \times 7 = 14$