CHEMISTRY PAPER-XI

(Physical Chemistry-A)

Time Allowed: 3 Hours

Max. Marks: 22

Note: (i) Attempt five questions in all, selecting at least one question from each Section. Sections-A to D carry equal marks. Section—E is compulsory. (ii) Use of log tables and simple calculator is allowed.

SECTION-A

- 1. (a) What are liquid crystals? Why are they so called? Describe different types of liquid crystals. How is thermography used in detecting cancer?
 - (b) Apply Le-Chatelier's principle to predict suitable conditions for getting maximum yield of the products in each of the following cases:
 - (i) Manufacture of nitric acid by Birkland-Eyde process:

$$N_2(g) + O_2(g) \rightleftharpoons 2 NO$$

$$\Delta H = + ve$$

(ii) Manufacture of sulphuric acid by contact process (key step): $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

$$\Delta H = -ve$$

- 2. (a) What are 'London Dispersion Forces'? How do they originate? What are the factors on which their magnitude depends?
 - (b) Taking suitable examples explain the difference between crystalline solids, liquid crystals and liquids.
 - (c) With the help of Le-Chatelier's principle explain:
 - (i) Effect of temperature and pressure on the solubility of gases in liquids.
 - (ii) Effect of temperature on the solubility of sugar in water.

SECTION-B

- 3. (a) Derive Van't Hoff equation in terms of K_p as well as K_e.
 - (b) Calculate the vapour pressure of water at 80° C. Given that latent heat of vaporisation of water is 540 Cal/gm and R is 1.987 Cals k⁻¹ mol⁻¹.
- 4. (a) Derive the equation:

$$\Delta G = -RT \ln K_p + RT \ln Q_p$$

- (b) Write expressions for equilibrium constant in terms of:
 - (i) Concentrations (K_c)
 - (ii) Pressure (K_p)
 - (iii) Mole fraction (K_x)

Relate K_x with K_c as well as K_p .

(c) K_p value for the reaction:

$$N_2(g) + O_2(g) \Longrightarrow 2NO(g)$$

at 298 K is 0.14. Calculate K_c (R = 0.082 lit atm K^{-1} mol⁻¹).

SECTION-C

- 5. (a) On the basis of reversible Carnot's cycle, how the concept of entropy was developed? Define entropy and state its units. Is it a state function?
 - (b) Derive an expression for the entropy change of an ideal gas, when the temperature changes from T₁ to T₂ and pressure changes from P₁ to P₂.
- (a) State and explain Carnot's theorem and explain how thermodynamic scale of temperature was developed.
 - (b) How do you explain that entropy change of the system plus that of the surroundings ($\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$) increases in an irreversible process, whereas it remains constant in a reversible process.

- (c) A heated copper block at 150° C loses 500 J of heat to the surroundings which are at room temperature i.e. 35°C. Calculate:
 - Entropy change of the copper block (i)
 - Entropy change of the surroundings (ii)
 - (iii) assuming the temperature of the block and of the surroundings to be constant.

SECTION-D

7. (a) Derive Gibb's Helmholtz equation in the form:

$$\frac{\partial}{\partial T} (\Delta G/T)_p = -\frac{\Delta H}{T^2}$$

- (b) The Volume occupied by 2.0 mole of an ideal gas increases from 2.0 dm³ to 20.0 dm³ during isothermal reversible expansion of an idal gas. Calculate the change in entropy and change in free energy of the gas at 350 K.
- 8. (a) Derive an expression for the change in free energy, when a system undergoes a change in temperature as well as a change in pressure in a reversible manner.
 - (b) State third law of thermodynamics. How does the law help in the determination of absolute entropies of chemical compounds at any desired temperature?
 - (c) What do you understand by criterion of spontaneity? Explain it in terms of Δ G

SECTION-E

- 9. Attempt any six:
 - (a) What type of liquid crystals are used in electronic industry?
 - (b) Relate K with K of a reversible reaction.
 - (c) Which of the properties of a system remain constant at thermodynamic equilibrium?
 - (d) Under what conditions ΔG° obtained from K_{p} and K_{c} has same
 - (e) Which will have a greater entropy, a normal protein or a denatured
 - (f) What is the effect of temperature on ΔS_{mixing} of ideal gases?
 - (g) Relate entropy of fusion of a solid with its freezing point.
 - (h) What do you understand by temperature coefficient of emf of an electrochemical cell?
 - (i) What is the difference between Gibb's free energy and Helmholtz free energy of a system?