PHYSICS PAPER-C

(Quantum Physics)

Time Allowed: 3 Hours

Maximum Marks: 22

Note: (1) Attempt five questions in all, selecting at least two questions each from Unit-I and Unit-II. Question No. 7 of Unit-III is compulsory.

(2) Use of non-programmable calculator is allowed.

UNIT-I

- 1. (a) Define Uncertainty principle. Give any two applications of this principle.
 - (b) A particle is described by a wave function $\Psi(x) = \frac{1+ix}{1+ix^2}$, prove that average value of position of the particle is zero.

2. (a) Show that
$$m \frac{d}{dt} < x > = < P_x > [Ehrenfest theorem].$$
 2

- (b) Show that $e^{i\phi}$ is an eigen function of z component of angular momentum operator.
- 3. (a) Show that if Ψ_1 and Ψ_2 are the solutions of time independent Schrodinger equation, then the function $\Psi = C_1 \Psi_1 + C_2 \Psi_2$ is also a solution for any constants C_1 and C_2 .
 - (b) Show that group velocity V_g can be obtained from phase velocity V_p by the relation:

$$V_{g} = V_{p} - \lambda \frac{dV_{p}}{d\lambda}$$
, λ is wavelength.

UNIT-II

What do you mean by Tunnel effect? A particle travelling with Energy E along x-axis faces a potential barrier defined as:

$$V(x) = \begin{bmatrix} 0 & \text{for } x < 0 \\ V_0 & \text{for } 0 < x < a \\ 0 & \text{for } x > a \end{bmatrix}$$

Derive an expression for transmission coefficient of the barrier.

			_
	5.	(a) The ground state wave function for hydrogen atom is Y	
		1 - r	
		$\sqrt{\pi a_0^3}$ find the value of average distance of the electron from	n
		the nucleus.	2
		(b) Show that the state of a hydrogen atom for a given value of η is not fold degenerate.	2
	6.	(a) For a free particle trapped in a one dimensional box, show the plot	S
			2
		(b) What are nodes and antinodes? Where do they occur? Explain in	1
		terms of probability density. [Related to part (a)].	2
	-	UNIT	
	7.	Attempt any six parts:	
		(a) Show that operators p _x and p _y commute.	•
		(b) What is the zero point energy of harmonic oscillator?	
		(c) Explain the term degeneracy.	
٠,		(d) What are the orthonormal functions?	-
		(e) Show that sum of reflection and transmission coefficients for	
		potential barrier for $E > V_0$ is unity, E is total energy. V_0 is height obarrier.	Ī
		5 Show that momentum operator is a Hermitian operator.	
		(g) Define Gaussian wave packets. 1×6=6	5
L			