PHYSICS PAPER-A

(Statistical Physics and Thermodynamics—I)

Time Allowed	0 0	3	Hour	S
--------------	-----	---	------	---

Maximum Marks: 44

- Note: (1) Attempt five questions in all, selecting two questions from each Sections A and B respectively.
 - (2) Section C is compulsory.
 - (3) Use of log table and non-programmable calculator is allowed.

SECTION-A

- 1. (a) Write down in tabular form the various microstates and macrostates of a system of 3 particles arranged in 3 compartments assuming:
 - (i) particles to be distinguishable
 - (ii) particles to be indistinguishable

(b) What is meant by term thermodynamic probability of a macrostate? How is it related to the probability of occurrence of that macrostate?

-

- (c) A bag contains 5 white and 6 black balls. Three balls are pulled out of bag one by one in a random fashion. Calculate the probability of all the three balls to be white.
- 2. (a) Taking the case of *n*-particles distributed in 2 compartments with equal a priori probability, discuss the variation of probability of a macrostate on account of small deviations from a state of maximum probability.
 - (b) Eight distinguishable particles are distributed among three compartments of equal size. Find the probability of the (i) macrostate (8, 0, 0) and (ii) macrostate (4, 2, 1).
- 3. (a) The probability for a state which has fractional deviation f from a most probable state is given by:

$$P(f)=P_{\text{max}}e^{-Nf^2/2}$$
. Find the value of P_{max} .

(b) 5 × 10¹⁰ gas molecules are enclosed in a cubical volume imagine the volume to be divided into two equal halves. Calculate the probability for a state in which the no. of molecules in a given state are only 0.001%, different from that in the equilibrium state.

SECTION-B

- 4. (a) Derive Maxwell-Boltzmann law for distribution of molecular speeds.6
 - (b) Using Maxwell-Boltzmann law of distribution of molecular speeds calculate the value of average speed. V_{av}.
- 5. (a) What are the assumptions of B-E statistics? Derive expression for B-E distribution law.
 - (b) There are two compartments a and b. The compartment a has 3 cells whereas 6 has 4 cells. Five bosons are distributed in these compartments. Find the thermodynamic probability for macrostate (5,0) and (4,2).
- 6. (a) What is free electron gas? Using F-D distribution law find expression for Fermi-Dirac distribution of electron energies and hence prove that:

$$Ef = \frac{h^2}{\alpha m} \left(\frac{3N}{8\pi V}\right)^{3/2}$$
, where symbols have their usual meanings.6

(b) The no. of conduction electrons per c.c. is 24.2×10^{22} in Beryllium and 0.91×10^{22} in cesium. If the Fermi energy of conduction electrons in Be is 14.14 eV, calculate the Fermi energy in Cs.

SECTION-C

7. Attempt any eight parts—

- (i) Three coins are tossed simultaneously. Find the probability of getting at least two heads.
- (ii) In a system of 8 distinguishable particles are distributed in two compartments with equal a priori probability calculate the probability for macrostates:

(i)(4,4), (ii)(3,5)

- (iii) Calculate the percentage error made in using Stirling's formula 1 n $n! = n \ln n n$ when n = 7.
- (iv) What is the minimum size of a phase space cell in classical and quantum mechanical system.
- (v) The Fermi energy of a silver at 0 K is 5.5 eV, find:
 - (a) Average energy per electron in silver.
 - (b) Average speed of electrons.
- (vi) Write differences between B-E and F-D statistics.
- (vii) What is the difference between photon gas and ideal gas?
- (viii) Sketch the graph showing the Maxwell-Boltzmann distribution of molecular speeds.
- (ix) What is the purpose of dividing phase space into cells?
- (x) Under what conditions do B-E and F-D statistics lead to classical statistics. 8×1=8