## CHEMISTRY Paper-XVII

(Inorganic Chemistry-A)

Time Allowed: Three Hours

Maximum Marks: 22

Note: Attempt five questions in all, selecting one question from each Unit and Unit V is compulsory. All questions carry equal marks.

UNIT-I

4 each

- 1. (a) What are the limitations of Valence Bond Theory? How does crystal field theory differ from valence bond theory?
  - (b) Discuss the factors affecting the magnitude of Crystal field splitting,  $\Delta_0$ .

- 2. (a) Explain crystal field splitting in tetrahedral complexes. How will you account for the non-existence of these complexes with low spin?
  - (b) Calculate crystal field splitting energy for following:
    - d<sup>4</sup> High spin (octahedral)
    - d<sup>5</sup> Strong field (octahedral) (ii)
    - d<sup>6</sup> Tetrahedral (iii)
    - d9 Tetrahedral (iv)

#### UNIT-II

4 each

- 3. (a) Explain in detail the mechanism of substitution reactions in square planer complexes.
  - (b) How chelation increases the stability of metal complexes? Also explain, how the number and size of chelate rings contribute to its stability.
- 4. (a) What is Trans Effect ? Explain the theories for it.
  - (b) What is  $Log \beta$ ? How is it related to the stability of metal complexes? Explain with examples.

### UNIT-III

4 each

- 5. (a) What are metal olefin complexes? Discuss method of preparation and bonding in these complexes.
  - (b) Discuss the different types of organometralic compounds with examples.
- 6. (a) How does infra-red spectroscopy help in explaining bonding and geometrics of metal carbonyls?
  - (b) Define Homogeneous hydrogenation reaction. Give mechanism of homogeneous hydrogenation of alkenes with Willkinson's Catalyst.

# UNIT-IV

4 each

- Discuss the structures of Myoglobin and Haemoglobin. Also explain the role played by these compounds in biological systems.
  - (b) What is  $N_a^+ K^+$  Pump? Explain in detail the biological roles of
- What is Nitrogen Fixation? Discuss briefly Biological and Abiological Nitrogen Fixation.
  - Oxygen acts as  $\pi$ -acceptor legand in its interaction with Home, what happen when CO interacts with Home in place of oxygen?

### UNIT-V

### 9. Compulsory Question:

- (a) Calculate CFSE of [NiCI<sub>4</sub>]<sup>2-</sup>.
- (b) Define stepwise and overall stability constants.
- (c) Why subscript 'g' is not used in Tetrahedral complexes?
- (d) How stretching frequency of terminal CO differ from that of bridged CO?
- (e) Name three essential trace elements.
- (f) What is Bohr Effect?

1×6=6