PHYSICS Paper-A

(Condensed Matter Physics-I)

Time Allowed: Three Hours	Maximum Marks: 4
Note: Attempt five questions in al	ll, selecting two questions from each
	ion-C (Q. No. 7) is compulsory. The use
of non-programmable calculat	ion are allowed log tables can be asked
SECT	ION-A
1. (a) Define geometrical structu	re factor and derive its expression for
FCC lattice.	
(b) Prove that crystals cannot l	have five-fold symmetry.
2. (a) Derive Laue's equations for	x X-ray diffraction by crystals. 5
(b) What is reciprocal lattice 2	Show that FCC lattice is the reciprocal
of the BCC lattice.	4
3. (a) Explain the crystal structure	of diamond and calculate its packing
fraction.	5
(b) Determine the Miller indice	s of a plane that makes an intercept of
	coordinate axes of an orthorhombic
crystal with a: b: $c = 4:3:2$	
SECTION	ON-B
4. Describe Kronig-Penny model ar	nd using it show that energy spectrum
of electron consists of number o	f allowed energy bands separated by
forbidden regions.	9

5. (a) Obtain expressions for wave function and energy eigen va of electrons confined in one dimensional rectangular box	-
length L. Also derive expression for free energy and density	0
states of this system.	
(b) The Fermi energy in silver is 5.51 eV. Find the average energy	0
free electrons in silver at 0 K.	ľ
6. (a) What is an extrinsic semiconductor? Discuss the variation of	h
Fermi level with temperature for an <i>n</i> -type semiconductor.	,
(b) Explain the phenomena of Hall Effect and obtain an expressi	10
for Hall coefficient.	2
SECTION-C	
7. Attempt any eight parts of the following:	
(i) What is packing fraction?	,
(ii) State Bloch theorem.	
(iii) What is primitive cell?	
(iv) What are intrinsic semiconductors?	

(vi) Semiconductors have negative temperature coefficient of resistance.

(vii) Define Fermi level.

(v) What are Brillouin zones?

Explain its meaning.

(viii) Define mobility.

(ix) Give diffraction condition for reciprocal lattice.

(x) What are indirect semiconductors?

 $8 \times 1 = 8$