MATHEMATICS Paper-I

(Plane Geometry)

Time Allowed: 3 Hours

Note: Attempt five questions in all, selecting at least two questions from each

Section-I

- 1. (a) Find the transformed equation of $17x^2 16xy + 17y^2 225 = 0$ when the axes are rotated through an angle of 45°.
 - (b) Show that if $ax^2 + 2hxy + by^2 = 1$ and $a'x + 2h'xy + b'y^2 = 1$ represent the same conic and axes are rectangular, then $(a-b)^2 + 4h^2 = (a'-b')^2$
- 2. (a) Prove that the angle between the lines joining the origin to the points of intersection of the straight line y = 3x + 2 with the curve

$$x^{2} + 2xy + 3y^{2} + 4x + 8y - 11 = 0 \text{ is } \tan^{-1}\left(\frac{2\sqrt{2}}{3}\right).$$

(b) If p_1 , p_2 be the lengths of perpendiculars drawn from point (-1, 2) to the pair of lines $2x^2 - 5xy + 2y^2 + 3x - 3y + 1 = 0$, then prove that

$$p_1 p_2 = \frac{12}{5}$$
.

- 3. (a) Find the equation of circle which passes through the point (2, 0) and touches the straight line x + 2y - 1 = 0 at the point (3, -1).
 - (b) The line 2x y = 4 meets the circle $x^2 + y^2 6x + 2y + 2 = 0$ at the points P and Q. If the tangents at P and Q meet at R. Find the coordinates of R. 3.3
- 4. (a) Find the equation of the circle which passes through the origin and cuts orthogonally each of the circles $x^2 + y^2 - 8x + 12 = 0$ and $x^2 + y^2$ -4x-6y-3=0.
 - (b) Find the limiting points of the co-axial system determined by the circles $x^2 + y^2 - 6x - 6y + 4 = 0$, $x^2 + y^2 - 2x - 4y + 3 = 0$. 3,3

Section-II

- (a) Prove that the locus of points such that two of the three normal from them to parabola $y^2 = 4ax$, coincide is $27ay^2 = 4(x-2a)^3$.
 - (b) Find the locus of poles of normal chord of the parabola $y^2 = 4ax. 3,3$

- 6. (a) Prove that the locus of the foot of the perpendicular from the focus on any tangent to a parabola is the tangent at the vertex.
 - (b) If the normal at any point P of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meet the major axes in G, find the locus of mid-point of the chord PG.
- 7. (a) Find the lengths of the semi-diameter conjugate to the diameter y = 3x of the ellipse $ax^2 + 4y^2 = 36$.
 - (b) Find the asymptotes to the hyperbola $3x^2 5xy 2y^2 + 5x + 11y 8$ = 0. Also find the equation of its conjugate hyperbola.
- 8. (a) If e and e' be the eccentricities of the hyperbolas $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1_{\text{and}}$

$$\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$$
 respectively, then prove that $\frac{1}{e^2} - \frac{1}{e'^2} = 1$.

(b) Identify the curve $x^2 - 4xy + 4y^2 - 32x + 4y + 16 = 0$. Find its latus rectum, focus and directrix.

MATHEMATICS Paper-II (Calculus-I)

Time Allowed: 3 Hours

Max. Marks: 30

- Note: (i) Attempt five questions, selecting at least two questions from each Unit.
 - (ii) Each question will carry 6 marks.

Unit-I

- 1. (a) Solve the inequation : $\frac{2}{x-2} < \frac{x+2}{x-2} < 2.$
 - (b) State and prove Archimedian property. Using the property prove that the set of natural numbers N is not bounded above. (3,3)
- 2. (a) Show that $\lim_{x\to 0} \sin \frac{1}{x}$ does not exists.

(b) Evaluate:
$$\lim_{x \to 1/2} \frac{1}{x} \left[\frac{1}{x} \right]$$
, if exists. (3,3)

B.Sc. PART-I [SEM I & II, (P.U.)] (D17-M18)

3. (a) Use intermediate value theorem to show that equation $\sin x - x + 1 = 0$ 0 has a real root.

(b) Evaluate:
$$\lim_{x\to 0} \frac{x-\sin x}{\tan^3 x}$$
. (3,3)

4. (a) Evaluate:
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right)$$
.

(b) Discuss the continuity of
$$f(x) = \begin{cases} \frac{|x| + x}{3}, & x \le 3 \\ \frac{2|x-3|}{x-3}, & x > 3 \end{cases}$$
 over R.

(3,3)

Unit-II

- 5. (a) Differentiate $y = x^{\sinh x} + x^{\cosh x}$ w.r.t x.
 - (b) Let f be a real valued function defined in [a, b] such that (i) f is continuous in [a, b] (ii) f is differentiable in (a, b) (iii) f(a) = f(b), then there exists at least one CE(a, b) such that f'(c) = 0.
- 6. (a) Prove that $\tanh^{-1} x = \frac{1}{2} \log \left(\frac{x+1}{1-x} \right)$, -1 < x < 1, and then find its derivative derivative.

(b) Use Cauchy's mean value theorem to evaluate
$$\lim_{x\to 1} \frac{\frac{cos \pi x}{2}}{\frac{\log 1}{x}}$$
. (3,3)

7. (a) Use mean value theorem to prove:

$$\frac{x}{1+x} < \log(1+x) < x \text{ for } x > -1, x \neq 0.$$

- (b) Use Taylor's theorem to express the polynomial $2x^3 + 7x^2 + x 6$ in (3,3)powers of (x-2).
- 8. (a) State and prove leibnitz's Theorem.

(b) If
$$y = \frac{\log x}{x}$$
, prove that $y_n = \frac{(-1)^n \lfloor n \rfloor}{x^{n+1}} \left[\log x - 1 \frac{-1}{2} \frac{-1}{3} \dots \frac{-1}{n} \right]$. (3,3)

MATHEMATICS Paper-III

(Trigonometry and Matrices)

Time Allowed: 3 Hours

Max. Marks: 30

MPERS

3

3

Note: (i) Attempt five questions in all by selecting at least two questions

(ii) All questions carry equal marks.

Unit-I

- 1. (a) Find the four 4th roots of $1 \sqrt{-3}$.
 - (b) Solve the equation:

$$x^9 - x^5 + x^4 - 1 = 0$$
.

2. (a) Show that root of equation:

$$(1+x)^n - (1-x)^n = 0.$$

are i tan
$$\left(\frac{k\pi}{n}\right)$$
, $k = 0, 1, 2, 3, \dots, n-1$.

- (b) Expand $\cos^2\theta$ in terms of cosine of multiple of θ .
- 3. (a) If $\tan (\theta + i\phi) = \cos \alpha + i \sin \alpha$, show that :

$$\phi = \frac{1}{2} \log \left[\tan \left(\frac{\pi}{4} + \frac{\alpha}{2} \right) \right].$$

(b) If S_n denote the sum of n terms of the series: $\sin \theta + \sin 2\theta + \sin 3\theta + \dots$ prove that:

$$\lim_{n \to \infty} \frac{1}{n} (S_1 + S_2 + S_3 + \dots + S_n) = \frac{1}{2} \cot \left(\frac{x}{2} \right).$$

Sum to n terms the series:

$$\tan^{-1}\frac{1}{3} - \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{13} + \dots$$
 and deduce the sum to infinite terms.

(b) If
$$i^{\alpha+i\beta} = \alpha + i\beta(\alpha, \beta \in \mathbb{R})$$
, prove that $\alpha^2 + \beta^2 = e^{-(4n+1)\pi\beta}$.

29

Unit-II

5. (a) Prove that a necessary and sufficient condition for a matrix A to be Hermition is that $A^{\oplus} = A$ 3

(b) Define rank of a matrix. Prove that points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ in a plane are collinear if and only if rank of the matrix:

$$\begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix}$$
 is less than three.
$$\frac{1}{2} + 2\frac{1}{2}$$

6. (a) Reduce: $A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -2 & 1 \\ 1 & -1 & 4 & 0 \\ -2 & 2 & 8 & 0 \end{pmatrix}$ to normal form and hence find 3.

(b) Using elementary operations, find inverse of matrix:

$$A = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 2 & 1 \\ -1 & 3 & 4 \end{pmatrix}$$

7. (a) When a system of linear equations is said to be consistant? Find the values of λ and μ so that the system of equations :

$$2x-3y+5z=12$$

 $3x + y + \lambda z = \mu$
 $x-7y+8z=17$

has (i) a unique solution (ii) infinite solutions (iii) No solution.

1/2+21/2

3

(b) State and prove Cayley Hamilton theorem.

(a) Show that the matrix $A \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is not diagonalizable over \mathbb{R} ,

however, A is diagonalizable over (1. Find an invertible matrix P over Q such that P-1 AP is a diagonal matrix.

(b) Prove that the modulus of each characteristic root of a unitary matrix is unity.