SOLUTION PAPERS MATHEMATICS Paper-I

(Solid Geometry)

Time Allowed: Three Hours

Note: Attempt five questions, selecting at least two questions from each section.

Section - A

- 1. (a) Shift the origin to a suitable point so that the equation $x^2 + y^2 + z^2$ -4x-8y+6z-4=0 is transformed into an equation in which the first degree terms are absent.
 - (b) Transform the equation $13x^2 + 13y^2 + 10z^2 + 8xy 4yz 4zx 144 =$ 0 when the axes are rotated to the axes having direction cosines

$$\left\langle -\frac{1}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle, \left\langle \frac{2}{3}, -\frac{1}{3}, \frac{2}{3} \right\rangle \text{ and } \left\langle \frac{2}{3}, \frac{2}{3}, -\frac{1}{3} \right\rangle$$

- 2. (a) Find the equation of the sphere passing through (1, 0, 0), (0, 1, 0), (0, 0, 0)0, 1) and whose centre lies on the plane 3x - y + z = 2.
 - (b) Find the centre and radius of the circle given by $x^2 + y^2 + z^2 = 49$, 2x + 3y + 6z = 14.
- 3. (a) Show that the plane 2x 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + 12 = 0$ $z^2 - 2x - 4y + 2z = 3$ and find the point of contact.
 - (b) Find the equation of the tangent planes to sphere $x^2 + y^2 + z^2 + 6x 2$ 2z + 1 = 0 which pass through the lines x + z - 16 = 0, 2y - 3z + 30 = 0.
- Find the equation of right circular cylinder of radius 3 and having for its axis the line:

$$\frac{x-1}{2} = \frac{y-3}{2} = \frac{5-z}{7}.$$

b) Find the equation of cylinder whose generatixes are parallel to the line $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-3}{4}$ and whose guiding curve is the parabola

$$x^2 + 2y = 0, z = 0$$
.

Section - B

5. (a) Find the equation of the right circular cone whose vertex is at the point (2, 1, -3), semivertical angle 30° and the direction cosines of whose axis are 3:4:-1.

(b) Find the equation of the quadric cone which passes through the three coordinates axes and the three mutually perpendicular lines

$$\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}, \frac{x}{1} = \frac{y}{-1} = \frac{z}{-1}, \frac{x}{5} = \frac{y}{4} = \frac{z}{1}.$$

- Find the equation of the cone whose vector is (2, -3, 1) and whose guiding curve is $4x^2 + y^2 = 1$, z = 0.
 - (b) Find the equation of the cone circumscribing the sphere $x^2 + y^2 + z^2$ +2x-2y-2=0 and having its vertex at (1, 1, 1).
- y = 0 represents a cone whose vector is (-1, -2, -3).
 - (b) Find the lines in which the plane x 2y z = 0 cuts cone $3x^2 + 4y^2 2y 2y = 0$ $z^2 = 0$. Find the angle between them.
- 8. (a) Show that the equation $x^2 + y^2 + z^2 6yz 2zx 2xy 6x 2y 2z +$ 2 = 0 represents a hyperboloid of two sheets.
 - (b) Reduce the equation $6y^2 - 18yz - 6zx + 2xy - 9x + 5y - 5z + 2 = 0$ to the standard form.

MATHEMATICS Paper-II

(Calculus – II)

Time Allowed: Three Hours

Maximum Marks: 30

1. Attempt five questions in all, selecting at least two questions from Note: each section.

2. Each question carries 6 marks.

Section - I

1. (a) Show that the line joining the two points of inflexion of the curve:

$$y^{2}(x-a) = x^{2}(x+a), x \neq \pm a$$

$$(x-a) = x^{2}(x+a)$$
 subtends an angle $\pi/3$ at the origin.

3,3

- Trace the curve $y^2 = (x + 1)^3$. Find the asymptotes of the curve:
- $x^{2}y + xy^{2} + 2x^{2} 2xy y^{2} 6x 2y 2y + 2 = 0$ (a) and show that they cut the curve in at most three points which lie on the straight line 2x - 3y - 4 = 0.
 - Determine the position and nature of the double points on the curve:

(b) Determine
$$\frac{1}{x^3 - y^2 - 7x^2 + 4y + 15x - 13 = 0}$$
.

3. (a) Define circle of curvature. Find the equation of the curve

$$\sqrt{x} + \sqrt{y} = \sqrt{a} .$$

- (b) Show that the points of intersection of the curve $xy(x^2 y^2) 25x^2 9y^2 + 144 = 0$ and its asymptotes lie on ellipse whose eccentricity is 4/5.
- 4. (a) If C_0 , C_p denote the lengths of chord of curvatures of the cardioid C_0 = a (1 + cos- C_0) along and perpendicular to the radius vector through any point respectively. Prove that:

$$3(C_0^2 + C_p^2) = 8aC_0$$
.

(b) Find the interval in which the curve $y = (x^2 + 4x + 5) e^{-x}$ is concave upwards or downwards.

Section - II

5. (a) If $\int_{0}^{\pi/4} \tan^{n} x dx$, show that, for n > 1, $I_{n} + I_{n-2} = \frac{1}{n-1}$. Hence deduce the value of I_{n} .

(b) Evaluate
$$\int \cosh^{-1} \left(\frac{1+x^2}{1-x^2} \right) dx$$
.

- 6. (a) Find the length of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ measured from (0, a) to any point (x, y).
 - (b) Find the volume of the solid obtained by revolving the area included between the curves $y^2 = x^3$ and $x^2 = y^3$ about X-axis.
- 7. (a) Find the surface area of the solid obtained by revolving the curve y $= 2x + 1 + \frac{1}{x^2}$ about x-axis for $1 \le x \le 2$.
 - (b) Use Simpson's rule with n = 4 to approximate $\int_{-1}^{1} (x^3 + 1) dx$. Also find the error.

52³5 ricity

3,3 1 bio ough

cave 4,2

duce

6

ı) to

ded

e y

150

BSC. PART-I [SEM I & II, (P.U.)] (D17-M18) 8. (a) Evaluate: $\lim_{n\to\infty} \frac{1}{n^{16}} (1^{15} + 2^{15} + \dots + n^{15}).$

(b) Derive the reduction formula for $\int x^n \sin(ax) dx$. Hence evaluate

$$\int_{0}^{\pi/2} x^3 \sin(x) \, dx.$$

MATHEMATICS Paper-III

(Theory of Equations)

Time Allowed: 3 Hours

Maximum Marks: 30

Note: Attempt five questions in all selecting at least two questions from each unit. All questions carry equal marks.

Unit-I

1. (a) Find a polynomial of least degree having -2, 1, 3 as its zeros and having value -8 at x = 2.

(b) Find g.c.d. of two polynomials $f(x) = x^3 + 6x^2 + 11x + 6$ and $g(x) = x^2 + 7x + 10$. Express the g.c.d as a(x) f(x) + b(x) g(x).

2. (a) Solve the equation $x^4 + 2x^3 - 2x - 1 = 0$ given that it has multiple roots.

(b) Prove that the complex roots of a real polynomial equation occur in conjugate pairs.

3. (a) Solve the equation $x^4 + 2x^3 - 21x^2 - 22x + 40 = 0$ given that its roots are in A.P.

(b) Solve the equation $x^4 - 8x^3 + 14x^2 + 8x - 15 = 0$ given that two of its roots are equal in magnitude but opposite in sign.

4 (a) Transform the equation $2x^3 - 9x^2 + 13x - 6 = 0$ into one in which second term is missing and hence solve the equation.

(b) If α , β , γ are roots of $2x^3 + x^2 + x + 1 = 0$ form an equation whose roots

are
$$\frac{1}{\beta^{2}} + \frac{1}{\gamma^{2}} - \frac{1}{\alpha^{2}}, \frac{1}{\gamma^{2}} + \frac{1}{\alpha^{2}} - \frac{1}{\beta^{2}}, \frac{1}{\gamma^{2}} + \frac{1}{\beta^{2}} - \frac{1}{\gamma^{2}}$$

Unit-II

- 5. (a) Find the equation whose roots are squared differences of the roots of the equation $x^3 + 6x^2 + 9x + 4 = 0$. Hence show that given equation has a double roots.
 - (b) Let $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ be a real polynomial of degree n and $a_0 \ne 0$. Let r and s be the number of variations in sign of f(x) and f(-x) respectively. Show that n r s is even.
- 6. (a) Show that the real roots of the equation $x^4 10x^3 13x^2 + 60x + 65 = 0$ lie between -4 and 12.
 - (b) Use Newton's method of divisor to find the integral roots of the equation: $3x^4 - 23x^3 + 35x^2 + 31x - 30 = 0.$
- 7. (a) Use Cardon's method to solve: $x^3 + x^2 16x + 20 = 0$.
 - (b) For the equation $x^3 6x^2 6x 14 = 0$, find $G^2 + 4H^3$ and hence discuss the nature of roots.
- 8. (a) Solve the biquadratic $x^4 6x^3 + 3x^2 + 22x 6 = 0$ by Descarte's Method.
 - (b) Solve by Ferrori's Method, the equation $2x^4 + 6x^3 3x^2 + 2 = 0$.

COMPUTER SCIENCE

Paper: CS03: Theory - A, Operating System Concepts

Time Allowed: Three Hours

Maximum Marks: 30

Note: Attempt five questions in all, including Q-9 in Section - E, which is compulsory, taking one each from Section-A to Section - D.

Section - A

- Describe the objectives and functions of Operating System. Also explain
 the different services provided by the operating system. Describe the
 structure of an Operating System.
- 2. Describe the different types of Operating Systems and their salient features with examples.