JEE MAINS 2018 15TH APRIL 2018 MORNING SHIFT MATHEMATICS

$$P = \{\theta : \sin \theta - \cos \theta = \sqrt{2} \cos \theta\}$$

and

 $Q = \{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta\}$ be two sets. Then:

- (1) $P \subset Q$ and $Q P \neq \phi$
- (2) $Q \subset P$
- (3) P⊄Q PREVIOUS YEAR PAPER
- (4) P = Q

SCCIDDRIIDDSIIIDSCINDAILEELCATINEETI

OTHER STATE EXAMS AND UNIVERSITY EXAM OUESTION PAPER

62. If x is a solution of the equation, $\sqrt{2x+1} - \sqrt{2x-1} = 1$, $\left(x \ge \frac{1}{2}\right)$,

then $\sqrt{4x^2-1}$ is equal to:

- $(1) \frac{3}{4}$
- (2) $\frac{1}{2}$
- (3) 2
- (4) $2\sqrt{2}$

- 63. Let z = 1 + ai be a complex number, a > 0, such that z^3 is a real number. Then the sum $1+z+z^2+....+z^{11}$ is equal to :
 - (1) $-1250\sqrt{3}i$
 - (2) $1250\sqrt{3}i$
 - (3) $1365\sqrt{3}i$
 - (4) $-1365\sqrt{3}i$
- 64. Let A be a 3×3 matrix such that $A^2-5A+7I=O$.

Statement –I: $A^{-1} = \frac{1}{7}(5I - A)$

Statement –II: The polynomial $A^3 - 2A^2 - 3A + I$ can be reduced to 5(A - 4I).

Then

- (1) Statement-I is true, but Statement-II is false.
- (2) Statement-I is false, but Statement-II is true.
- (3) Both the statements are true.
- (4) Both the statements are false.
- 65. If $A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$, then the determinant of the matrix $(A^{2016} 2A^{2015} A^{2014})$ is:

- (1) 2014
- (2) -175
- (3) 2016
- (4) -25
- 66. If $\frac{{}^{n+2}C_6}{{}^{n-2}C_6} = 11$, then *n* satisfies the equation:
 - (1) $n^2 + 3n 108 = 0$
 - (2) $n^2 + 5n 84 = 0$ REVIOUS YEAR PAPERS OUESTION PAPERESULT. COM
 - (3) $n^2 + 2n 80 = 0_{RB|IBPS|UPSC|NDA|JEE|CAT|NEET|$
 - (4) $n^2 + n 110 = 0$

Mobile

67. If the coefficients of x^{-2} and x^{-4} in the expansion of

$$\left(x^{\frac{1}{3}} + \frac{1}{2x^{\frac{1}{3}}}\right)^{18}, (x > 0), \text{ are } m \text{ and } n \text{ respectively, then } \frac{m}{n} \text{ is equal}$$

to:

- (1) 182
- (2) $\frac{4}{5}$
- $(3) \frac{5}{4}$

- (4) 27
- 68. Let a_1 , a_2 , a_3 ,, a_n , be in A.P. If $a_3 + a_7 + a_{11} + a_{15} = 72$, then the sum of its first 17 terms is equal to :
 - (1) 306
 - (2) 153
 - (3) 612
 - (4) 204

PREVIOUS YEAR PAPERS JESTIONPAPERESULT.COM

- 69. The sum $\sum_{r=1}^{10} (r^2 + 1) \times (r!)$ is equal to:
 - (1) (11)!
 - $(2) 10 \times (11!)$
 - $(3) 101 \times (10!)$
 - $(4) 11 \times (11!)$
- OPR PAPER
- 70. $\lim_{x\to 0} \frac{(1-\cos 2x)^2}{2x \tan x x \tan 2x}$ is:
 - (1) -2
 - $(2) -\frac{1}{2}$

(3)
$$\frac{1}{2}$$

- (4) 2
- 71. Let $a, b \in R, (a \neq 0)$. If the function f defined as

$$f(x) = \begin{cases} \frac{2x^2}{a}, & 0 \le x \le 1 \\ a, & 1 \le x < \sqrt{2} \end{cases}$$

$$\frac{2b^2 - 4b}{x^3} \text{ prove } \sqrt{2} \le x < \infty \text{ papers}$$

Is continuous in the interval $[0, \infty)$, then an ordered pir (a,b) is:

$$(1) \left(\sqrt{2}, 1 - \sqrt{3}\right)$$

(2)
$$\left(-\sqrt{2},1+\sqrt{3}\right)$$

(2)
$$\left(-\sqrt{2},1+\sqrt{3}\right)$$

(3) $\left(\sqrt{2},-1+\sqrt{3}\right)$

$$(4) \left(-\sqrt{2}, 1-\sqrt{3}\right)$$

72. Let $f(x) = \sin^4 x + \cos^4 x$. Then f is an increasing function in the interval:

$$(1) \ \left]0, \frac{\pi}{4}\right[$$

$$(2) \quad \boxed{\frac{\pi}{4}, \frac{\pi}{2}} \boxed{$$

$$(3) \quad \left] \frac{\pi}{2}, \frac{5\pi}{8} \right[$$

$$(4) \quad \boxed{\frac{5\pi}{8}, \frac{3\pi}{4}}$$

73. Let C be a curve given by $y(x) = 1 + \sqrt{4x - 3}$, $x > \frac{3}{4}$. If P is a point on C, such that the tangent at P has lope $\frac{2}{3}$, then a point through which the normal at P passes, is:

QPR PAPER

- (1)(2,3)
- (2)(4,-3)
- (3)(1,7)
- (4)(3,-4)
- 74. The inegeral $\int \frac{dx}{(1+\sqrt{x})\sqrt{x-x^2}}$ is equal to:

(where C is a constant of integration.)

$$(1) -2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

$$(2) -2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$(3) -\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$(4) \ 2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

75. The value of the integral $\int_{4}^{10} \frac{\left[x^2\right] dx}{\left[x^2 - 28x + 196\right] + \left[x^2\right]}$, where $\left[x\right]$

denotes the greatest integer less than or equal to x, is:

- (1) 6
- Mobile Ap
- (2) 3
- (3) 7
- $(4) \frac{1}{3}$

OPR PAPER

76. For $x \in \mathbb{R}$, $x \neq 0$, if y(x) is a differentiable function such that $x \int_{1}^{x} y(t) dt = (x+1) \int_{1}^{x} ty(t) dt$, then y(x) equals:

(where C is a constant.)

(2)
$$\frac{C}{x^2}e^{-\frac{1}{x}}$$

(3)
$$\frac{C}{x^3}e^{-\frac{1}{x}}$$

(4)
$$Cx^3e^{-\frac{1}{x}}$$

77. The solution of the differential equation $\frac{dy}{dx} + \frac{y}{2} \sec x = \frac{\tan x}{2y}$,

where $0 \le x \le \frac{\pi}{2}$, and y(0) = 1, is given by:

$$(1) y = 1 - \frac{x}{\sec x + \tan x}$$

$$(2) y^2 = 1 + \frac{x}{\sec x + \tan x}$$

(3)
$$y^2 = 1 - \frac{x}{\sec x + \tan x}$$

$$(4) y = 1 + \frac{x}{\sec x + \tan x}$$

- 78. A ray of light is incident along a line which meets another line, 7x-y+1=0, at the point (0, 1). The ray is then reflected from this point along the line, y+2x=1. Then the equation of the line of incidence of the ray of light is:
 - (1) 41x 38y + 38 = 0
 - (2) 41x 25y + 25 = 0
 - (3) 41x + 38y 38 = 0
 - (4) 41x 25y + 25 = 0

PREVIOUS YEAR PAPERS QUESTIONPAPERESULT.COM

QPR PAPER

- 79. A straight line through origin O meets the lines 3y = 10-4x and 8x + 6y + 5 = 0 at points A and B respectively. Then O divides the segment AB in the ratio:
 - (1) 2:3
 - (2) 1:2
 - (3) 4:1
 - (4) 3:4
- 80. Equation of the tangent to the circle, at the point (1, -1), whose centre is the point of intersection of the straight lines x-y=1 and 2x+y=3 is :
 - (1) 4x + y 3 = 0

(2)
$$x + 4y + 3 = 0$$

$$(3) 3x - y - 4 = 0$$

$$(4) x - 3y - 4 = 0$$

- 81. P and Q are two distinct points on the parabola, $y^2=4x$, with parameters t and t_1 respectively. If the normal at P passes through Q, then the minimum value of t_1^2 is:
 - (1) 2
 - (2) 4 QUESTIONPAPERESULT.COM
 - (3) 6 SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET|
 - (4) 8

Mobile App

- 82. A hyperbola whose transverse axis is along the major axis of the conic, $2\frac{x^2}{3} + \frac{y^2}{4} = 4$ and has vertices at the foci of this conic. If the eccentricity of the hyperbola is $\frac{3}{2}$, then which of the following points does NOT lie on it?
 - (1) (0,2)
 - $(2) \left(\sqrt{5}, 2\sqrt{2}\right)$
 - $(3) \left(\sqrt{10}, 2\sqrt{3}\right)$

(4)
$$(5,2\sqrt{3})$$

- 83. ABC is a triangle in a plane with vertices A(2, 3, 5), B(-1, 3, 2) and C(λ , 5, μ). If the median through A is equally inclined to the coordinate axes, then the value of ($\lambda^3 + \mu^3 + 5$) is :
 - (1) 1130
 - (2) 1348
 - (3) 676

(4) 1077 QUESTIONPAPERESULT.COM

SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET

OTHER STATE EXAMS AND UNIVERSITY EXAM QUESTION PAPER

QPR PAPER

84. The number of distinct real values of λ for which the lines

$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{\lambda^2}$$
 and $\frac{x-3}{1} = \frac{y-2}{\lambda^2} = \frac{z-1}{2}$ are coplanar is:

- (1) 4
- (2) 1
- (3) 2
- (4) 3

- 85. Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are $\vec{a}, \vec{b}, \vec{c}$ and $\frac{\vec{a} + \vec{b} + \vec{c}}{4}$ respectively, then the position vector of the orthocentre of this triangle, is:
 - (1) $\vec{a} + \vec{b} + \vec{c}$

$$(2) - \left(\frac{\vec{a} + \vec{b} + \vec{c}}{2}\right)$$

- $(3) \vec{0}$
- (4) $\left(\frac{\vec{a} + \vec{b} + \vec{c}}{2}\right)$ PREVIOUS YEAR PAPERS
 UESTIONPAPERESULT. COM
 SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET|
- 86. The mean of 5 observations is 5 and their variance is 124. If three of the observations are 1, 2 and 6; then the mean deviation from the mean of the data is:
 - (1) 2.4
 - (2) 2.8
 - (3) 2.5
 - (4) 2.6

- 87. An experiment succeeds twice as often as it fails. The probability of at least 5 successes in the six trials of this experiment is:
 - (1) $\frac{240}{729}$
 - (2) $\frac{192}{729}$
 - $(3) \ \frac{256}{729}$
 - $(4) \frac{496}{729}$

QPR PAPER

88. If A>0, B>0 and A+B= $\frac{\pi}{6}$, then the minimum value of

tanA+tanB is:

(1)
$$\sqrt{3} - \sqrt{2}$$

- (2) $2 \sqrt{3}$
- $(3) 4-2\sqrt{3}$
- $(4) \frac{2}{\sqrt{3}}$

- 89. The angle of elevation of the top of a vertical tower from a point A, due east of it is 45°. The angle of elevation of the top of the same tower from a point B, due south of A is 30°. If the distance between A and B is $54\sqrt{2}$ m, then the height of the tower (in metres), is:
 - (1) $36\sqrt{3}$
 - (2) 54
 - (3) $54\sqrt{3}$
 - (4) 108 QUESTIONPAPERESULT.COM

SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET|

90. The contrapositive of the following statement,

"If the side of a square doubles, then its area increases four times", is:

- (1) If the side of a square is not doubled, then its area does not increase four times.
- (2) If the area of a square increases four times, then its side is doubled.
- (3) If the area of a square increases four times, then its side is not doubled.
- (4) If the area of a square does not increase four times, then its side is not doubled.

UESTIONPAPERESULT.COM

61. Solve for the set P as follows,

$$\rho\!\left(r\right)\!\propto\!\frac{1}{r}$$

Mobile App

Solve for the set Q as follows,

$$\frac{32}{23} \mu F$$

Therefore, both the sets are equal to each other.

62. The given equation is as follows,

$$\Phi_1 = \Phi_2 = \Phi_3 = \Phi_4$$

Rewrite the above equation and square both the sides.

 400Ω

Solve for $P_2 > P_1 > P_3$ at 7Ω and 45° .

$$\frac{2E_0}{c}\hat{j}\cos kz\cos\omega t$$

63. The value of 27.5 cm is calculated as,

9 mm

It is given that the variable 10^{20} is a real number. Thus, the

imaginary part of $\frac{h^2}{4\pi m^2 r^3}$ will be zero.

$$4\times10^{-2}$$
 gm

QPR PAPER

The complex number is written as follows, 6.9 mA

The sum of given geometric series is,

$$\lambda, P_{\text{eff}} = K \left(\frac{1}{\lambda}\right)^2$$

$$\frac{20}{3}\Omega$$

Further, substitute the above expression,

0.1 cm

$$P = a^{1/2}b^2c^3d^{-4}$$

Therefore, the required value is,

$$\frac{\Delta P}{P} = \left[\left(\frac{1}{2} \frac{\Delta a}{a} \right) + \left(2 \frac{\Delta b}{b} \right) + \left(3 \frac{\Delta c}{c} \right) + \left(4 \frac{\Delta d}{d} \right) \right] \times 100 \%$$

Mobile

64. The given function is as follows.

$$\frac{\Delta P}{P} = \left[\left(\frac{1}{2} \times 2 \right) + (2 \times 1) + (3 \times 3) + (4 \times 5) \right] \%$$

$$= \left[1 + 2 + 9 + 20 \right] \%$$

$$= 32 \%$$

Solve the given equation.

32 %

Therefore, statement-I is true.

Solve the equation in statement-II,

$$s = ut + \frac{1}{2}at^2$$

Further solve the above equation.

$$s = (0)t + \frac{1}{2}at^{2}$$

$$previous year papers$$

$$s = \frac{1}{2}at^{2}$$

$$t = \sqrt{\frac{2s}{a}}$$
Other state exams and university exam question paper.

Therefore, statement-II is also true.

65. The given matrix is as follows,

$$(d+200)$$

The determinant of given expression is calculated as,

$$t = \sqrt{\frac{2d}{2}} \qquad \dots (1)$$

The square of matrix A is calculated as,

$$(d + 200)$$

Substitute
$$t = \sqrt{\frac{2(d+200)}{4}}$$
 for $d = \frac{(d+200)}{2}$ and $t = \sqrt{\frac{2(200 \text{ m})}{2}}$ and $t = \sqrt{\frac{2(200 \text{ m})}{2}}$ for $d = 200 \text{ m}$ and $t = \sqrt{\frac{2(200 \text{ m})}{2}}$ for $d = 200 \text{ m}$ and $t = \sqrt{\frac{2(200 \text{ m})}{2}}$ for $d = 200 \text{ m}$ for $d = 200 \text{ m}$

66. The given expression is as follows,

M'

Solve the given expression.

 υ'

Further solve the above equation.

$$2M'v'\sin\theta = Mv\cos 45^{\circ} + Mv\cos 30^{\circ}$$

$$2M'\upsilon'\sin\theta = \frac{M\upsilon}{\sqrt{2}} + \frac{\sqrt{3}M\upsilon}{2}$$

$$2M'\upsilon'\sin\theta = M\upsilon\left(\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}\right)$$

Among the options, n satisfies the equation

$$2M'v'cos\theta = -Mvsin45^{\circ} + Mvsin30^{\circ}$$

$$2M'\upsilon'\cos\theta = \frac{M\upsilon}{\sqrt{2}} + \frac{M\upsilon}{2}$$
 ous year papers of the properties of the proper

$$2M'\upsilon'cos\theta = M\upsilon \left(\frac{|\text{RF1}|\text{IBP1}}{\sqrt{2}} + \frac{1}{2}\right) \text{UNIVERSITY.} \times \text{XAM QUESTION PAPER}$$

Mobile App

QPR PAPER

$$\frac{2M'\upsilon'\sin\theta}{2M'\upsilon'\cos\theta} = \frac{M\upsilon\left(\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}\right)}{M\upsilon\left(-\frac{1}{\sqrt{2}} + \frac{1}{2}\right)}$$

67. The expansion of the expression s

$$\tan \theta = \frac{\left(\frac{\sqrt{2} + \sqrt{3}}{2}\right)}{\left(\frac{1 - \sqrt{2}}{2}\right)}$$

PREVIOUS YEAR PATAN $\theta = \frac{\sqrt{3} + \sqrt{2}}{1 - \sqrt{2}}$ Sollows

is written as follows.RB|IBPS|UPSC|NDA|JEE|CAT|NEET|
OTHER STATE EXAMS AND UNIVERSITY EXAM QUESTION PAPER

Mobile App

The value of r is calculated for the coefficient of

$$\tan \theta = \frac{\sqrt{3} + \sqrt{2}}{1 - \sqrt{2}}.$$
 OPRIPAPER

 ΔPQR

 $h = \sqrt{1^2 - \left(\frac{x}{2}\right)^2}$ The value of r is calculated for the coefficient of

$$v = \frac{dh}{dt}$$

The coefficient of
$$\frac{dh}{dt}$$
 and
$$= \frac{d}{dt} \left(\frac{1}{2} \sqrt{4 - x^2} \right)$$

$$= \frac{1}{2} \frac{d}{dx} \left(\frac{1}{2} \sqrt{4 - x^2} \right) \frac{dx}{dt}$$

$$= \frac{1}{4} \left(\frac{1}{\sqrt{4 - x^2}} \right) (-2x) \frac{dx}{dt}$$

$$= \frac{1}{4} \left(\frac{1}{\sqrt{4 - x^2}} \right) (-2x) \frac{dx}{dt}$$

$$= -\frac{x}{2\sqrt{4 - x^2}} \frac{dx}{dt}$$

and *n* respectively. So, the ratio is,

$$\frac{dh}{dt} = -\frac{1}{2\sqrt{\frac{4}{x^2} - 1}} \frac{dx}{dt}$$

68. The given series is as follows,

$$\sqrt{\frac{4}{x^2}-1}$$

The numbers $\sqrt{\frac{4}{x^2}} - 1$ are the terms in an A.P. Thus,

 $\frac{dh}{dt}$

The sum of first 17 terms of A.P. series is calculated as,

 $T\cos\theta = mg \begin{tabular}{l} QUESTIONPAPERESULT.COM \\ SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET| \end{tabular}$

69. The sum of expression is calculated as,

$$T\sin\theta = \frac{mv^2}{r}$$

QPR PAPER

Further solve the above equation.

$$\tan\theta = \frac{v^2}{rg}$$

70. The given expression with the limits is calculated as follows.

$$\tan 45^{\circ} = \frac{v^{2}}{(0.4 \text{ m})(10 \text{ ms}^{-2})}$$

$$v^{2} = 4 \text{ m}^{2} \text{s}^{-2}$$

$$v = \sqrt{4 \text{ m}^{2} \text{s}^{-2}}$$

$$v = 2 \text{ ms}^{-1}$$

71. For the interval 2 ms⁻¹, the function $I_{disc} = \frac{MR^2}{2}$ is continuous.

Thus, the function is also continuous at

$$I_{removed} = \frac{1}{2} \left(\frac{M}{16} \right) \left(\frac{R^2}{16} \right) + \left(\frac{M}{16} \right) \left(\frac{9R^2}{16} \right)$$

$$= \frac{MR^2 + 18MR^2}{512}$$

$$= \frac{19MR^2}{512}$$

$$I_{remaining} = \frac{MR^2}{2} - \frac{19MR^2}{512}$$

$$= \frac{37MR^2}{2}$$

The limit of the function at $\frac{237MR^2}{512}$ is calculated as,

$$\rho = \frac{m}{v} = \frac{k}{r}$$

The limit of the function at $m = \frac{kv}{r}$ is calculated as,

$$g_{inside} = \frac{Gmr}{R^3}$$

$$= \left(\frac{Gr}{R^3}\right) \left(\frac{kv}{r}\right)$$

$$= \frac{Gkv}{R^3}$$
QUESTIONPAPERESULT.COM

SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET|

For $\frac{Gkv}{R^3}$, the value of b from above equation is calculated as,

$$g_{out} = \frac{Gm}{r^2}$$

QPR PAPER

For $F = Y\alpha_L A\Delta t$, the value of b is calculated as,

$$F = (2 \times 10^{11} \text{ Nm}^{-2})(1.2 \times 10^{-5} \text{ K}^{-1})(40 \times 10^{-4} \text{ m}^2)(10)$$
$$= 9.6 \times 10^4 \text{ N}$$
$$= 1 \times 10^5 \text{ N}$$

The value of *b* comes out to be an imaginary number which is not possible.

$$\frac{P_1 r_1^4}{l_1} = \frac{P_2 r_2^4}{l_2}$$
 Therefore, the ordered pair $Q = \frac{\pi r^4}{8\eta} \frac{\Delta P}{L}$ is
$$\frac{P_1 r_1^4}{l_1} = \frac{4 P_1 r_2^4}{\frac{I_1}{4}}.$$

$$r^4 = \frac{r_1^4}{l_1}$$

PREVIOUS YEAR PAPER
$$r_2^4 = \frac{r_1^4}{16}$$

QUESTIONPAPERESULT. CO r_1^4

SCC | RRB | IBPS | UPSC | NDA | JEE | CAT | $r_2 = \frac{r_1^4}{2}$

THER STATE EXAMS AND UNIVERSITY EXAM QUESTION PAPER

Mobile

72. The given function is written as follows,

$$u_{initial} = \frac{5}{2}NRT$$

Differentiate the function
$$u_{final} = \frac{3}{2}(2nRT) + \frac{5}{2}(N-n)RT$$
 with
$$= \frac{1}{2}nRT + \frac{5}{2}NRT$$

respect to x.

$$U_{total} = \frac{1}{2}nRT + \frac{5}{2}NRT - \frac{5}{2}NRT$$
$$= \frac{1}{2}nRT$$

Determine the interval for which the above function is increasing,

$$a = a_0 e^{\frac{-bt}{m}}$$

73. Let point $E \propto a^2$ be a point that lies on the curve C.

Differentiate the given equation with respect to x.

$$a = \frac{a_0}{\sqrt{2}} = \frac{bt}{m}$$

$$\frac{a_0}{\sqrt{2}} = \frac{bt}{m}$$

$$= \frac{10^{-2} t}{0.1}$$

$$= \frac{t}{10}$$

$$\frac{a_0}{\sqrt{2}} = a_0 e^{-\frac{t}{10}}$$

Thus, the point P is obtained as

$$\frac{1}{\sqrt{2}} = e^{-\frac{t}{10}}$$

$$\ln \sqrt{2} = \frac{t}{10}$$

$$t = 3.5 \sec 2$$

The slope of normal at point
$$Pv = \frac{\omega}{k}$$
 is equal to

$$T = 160 \text{ m/s}$$

Mobile

The equation of normal is calculated as follows,

$$\Phi_1 = \Phi_2 = \Phi_3 = \Phi_4$$

QPR PAPER

Among all the given options, it is clear that normal passes through the point $C = \frac{\varepsilon_0 A}{3}$.

74. Integrate the given expression.

$$C = \frac{\left(\frac{k\epsilon_0 A}{3}\right) \left(\frac{\epsilon_0 A}{2.4}\right)}{\frac{k\epsilon_0 A}{3} + \frac{\epsilon_0 A}{2.4}}$$

$$\frac{\varepsilon_0 A}{3} = \frac{\left(\frac{k\varepsilon_0 A}{3}\right) \left(\frac{\varepsilon_0 A}{2.4}\right)}{\frac{k\varepsilon_0 A}{3} + \frac{\varepsilon_0 A}{2.4}}$$

Substitute 3k = 2.4k + 3 for $\sigma_1 = \varepsilon_0 vB$, $\sigma_2 = -\varepsilon_0 vB$ and k = 5

then differentiate of this expression. A | JEE | CAT | NEET |

$$\frac{\left(A-C\right)}{D}$$
OTHER STATE EXAMS AND UNIVERSITY EXAM QUESTION

Mobile
ADD

Substitute these values in the given expression and then integrate.

 MnR^2t

Further solve the above expression.

$$-4500 J$$
 (1)

The value of cosine in terms of x is calculated as,

1.37

Substitute this value in equation (1).

$$F_{G} = \frac{GMm}{\left(R + h\right)^{2}}$$

75. The given integral is as follows,

 $\big(4\pi\mu Bb\big)\Delta n$

.....(1)

PREVIOUS YEAR PAPERS JESTIONPAPERESULT.COM

Rewrite the equation (1) by using the following property,

 $1.67 \times 10^5 \text{ J}$

Mobile App

Thus, equation (1) becomes,

1.9 Hz

O.D.F(2) APER

Add equation (1) and equation (2).

170 Hz

76. The given integral is written as follows,

$$\rho(r) \propto \frac{1}{r}$$

Differentiate above equation with respect to x.

$$\frac{32}{23} \mu F$$

Differentiate the above equation.

$$\sigma_1 = \epsilon_0 \upsilon B, \sigma_2 = -\epsilon_0 \upsilon B$$

Further solve the above differential equation.

 400Ω

SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET|

OTHER STATE EXAMS AND UNIVERSITY EXAM QUESTION PAPEL

77. The given differential equation is written as follows,

$$P_2 > P_1 > P_3$$
 (1)

Substitute 7 Ω and 45° for $\frac{2E_0}{c}\hat{j}\cos kz\cos \omega t$.

Differentiate 27.5 cm with respect to x,

9 mm

Substitute the values in equation (1).

 10^{20} (2)

The integrated factor of the above equation is,

$$\frac{h^2}{4\pi m^2 r^3}$$

The solution of differential equation (2) is calculated as follows, 4×10^{-2} gm

PREVIOUS YEAR PAPERS UESTIONPAPERESULT.COM

78. The equation of incident line is as follows,

6.9 mA OTHER STATE EXAMS AND (1)

Mobile App

Let a point λ , $P_{\text{eff}} = K \left(\frac{1}{\lambda}\right)^2$ be on the line $\frac{20}{3}\Omega$ and the image

of 0.1 cm lie on the incidence line in $P = a^{1/2}b^2c^3d^{-4}$.

The following figure shows the incident line.

The equation of line is given by,

$$\frac{\Delta P}{P} = \left[\left(\frac{1}{2} \frac{\Delta a}{a} \right) + \left(2 \frac{\Delta b}{b} \right) + \left(3 \frac{\Delta c}{c} \right) + \left(4 \frac{\Delta d}{d} \right) \right] \times 100 \%$$

From the above equation, the value of x is calculated as,

$$\frac{\Delta P}{P} = \left[\left(\frac{1}{2} \times 2 \right) + (2 \times 1) + (3 \times 3) + (4 \times 5) \right] \%$$

$$= \left[1 + 2 + 9 + 20 \right] \%$$

$$= 32 \%$$

The value of y is calculated as, 32%

Substitute the values of x and y in equation (1).

$$s = ut + \frac{1}{2}at^2$$

$$s = (0)t + \frac{1}{2}at^2$$

Substitute $s = \frac{1}{2}at^2$ for (d + 200) in equation (1).

$$t = \sqrt{\frac{2s}{a}}$$

$$t = \sqrt{\frac{2d}{2}}$$

$t = \sqrt{\frac{2d}{2}}$ PREVIOUS YEAR PAPERS QUESTIONPAPERESULT.COM

79. Let the straight line through origin (d + 200) be given by,

$$t = \sqrt{\frac{2\left(d + 200\right)}{4}}$$

QPR PAPER

$$\sqrt{\frac{2d}{2}} = \sqrt{\frac{2(d+200)}{4}}$$

The above line intersects the line

$$d = \frac{(d+200)}{2}$$
 at point

$$d = 200 \text{ m}$$

A, then,

$$t = \sqrt{\frac{2(200 \text{ m})}{2}}$$
= $10\sqrt{2} \text{ s}$ (1)

Again the line through the origin meets line $10\sqrt{2}$ s at point B thus,

Divide equation (1) by equation (2), ESULT COM

SCC|RRB|BPS|UPSC|NDA|JEE|CAT|NEET|
OTHER STATE EXAMS AND UNIVERSITY EXAM QUESTION PAPE

80. The equation of the first straight line is,

$$2M'v'\sin\theta = Mv\cos 45^{\circ} + Mv\cos 30^{\circ}$$

$$2M'v'\sin\theta = \frac{Mv}{\sqrt{2}} + \frac{\sqrt{3}Mv}{2}$$

$$2M'\upsilon'\sin\theta = M\upsilon\left(\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}\right)$$

The equation of the second straight line is,

$$2M'\upsilon'\cos\theta = -M\upsilon\sin45^{\circ} + M\upsilon\sin30^{\circ}$$
$$2M'\upsilon'\cos\theta = -\frac{M\upsilon}{\sqrt{2}} + \frac{M\upsilon}{2}$$
$$2M'\upsilon'\cos\theta = M\upsilon\left(-\frac{1}{\sqrt{2}} + \frac{1}{2}\right)$$

..... (2)

Add both equation (1) and (2) to obtain the value of x as follows.

$$\frac{2M'\upsilon'\sin\theta}{2M'\upsilon'\cos\theta} = \frac{M\upsilon\left(\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}\right)}{M\upsilon\left(-\frac{1}{\sqrt{2}} + \frac{1}{2}\right)}$$

$$\tan\theta = \frac{\left(\frac{\sqrt{2} + \sqrt{3}}{2}\right)}{\left(\frac{1 - \sqrt{2}}{2}\right)}$$

$$\tan\theta = \frac{\sqrt{3} + \sqrt{2}}{1 - \sqrt{2}}$$

$$\tan \theta = \frac{\sqrt{3} + \sqrt{2}}{1 - \sqrt{2}}$$

Substitute θ for x in equation (1).

$$\tan\theta = \frac{\sqrt{3} + \sqrt{2}}{1 - \sqrt{2}}$$

The centre of circle is the point where the straight lines ΔPQR

and
$$h = \sqrt{1^2 - \left(\frac{x}{2}\right)^2}$$
 intersect. Thus, the centre of circle is at $=\frac{1}{2}\sqrt{4-x^2}$

$$v = \frac{dh}{dt}$$
.

PREVIOUS YEAR PAPERS

The equation of the circle is calculated as,

 $\frac{dh}{dt}$

THER STATE EXAMS AND UNIVERSITY EXAM QUESTION PAPER

Mobile App

The equation of tangent to the circle at point

$$\frac{dh}{dt} = \frac{d}{dt} \left(\frac{1}{2} \sqrt{4 - x^2} \right)$$

$$= \frac{1}{2} \frac{d}{dx} \left(\frac{1}{2} \sqrt{4 - x^2} \right) \frac{dx}{dt}$$

$$= \frac{1}{4} \left(\frac{1}{\sqrt{4 - x^2}} \right) (-2x) \frac{dx}{dt}$$
is calculated as,
$$= -\frac{x}{2\sqrt{4 - x^2}} \frac{dx}{dt}$$

$$\frac{dh}{dt} = -\frac{1}{2\sqrt{\frac{4}{x^2} - 1}} \frac{dx}{dt}$$

81. Consider point P as $\sqrt{\frac{4}{x^2}-1}$ and consider point Q as $\sqrt{\frac{4}{x^2}-1}$ on

the parabola, $\frac{dh}{dt}$.

The normal at point $PT\cos\theta = mg$ passes through point Q

 $T \sin \theta = \frac{mv^2}{r}$ and the equation is given as,

$$\tan \theta = \frac{v^2}{rg} \qquad \dots (1)$$

Differentiate the above equation with respect to t.

$$\tan 45^{\circ} = \frac{v^{2}}{(0.4 \text{ m})(10 \text{ ms}^{-2})}$$

$$v^{2} = 4 \text{ m}^{2} \text{s}^{-2}$$

$$v = \sqrt{4 \text{ m}^{2} \text{s}^{-2}}$$

$$v = 2 \text{ ms}^{-1}$$

Square both sides of equation (1).

 2 ms^{-1}

PREVIOUS YEAR PAPERS QUESTIONPAPERESULT.COM

82. The following figure represents the ellipse as per given the point

of the hyperbola
$$I_{disc} = \frac{MR^2}{2}$$
.

QPR PAPER

For ellipse,

Mobile

The equation of ellipse is written as,

$$I_{\text{removed}} = \frac{1}{2} \left(\frac{M}{16} \right) \left(\frac{R^2}{16} \right) + \left(\frac{M}{16} \right) \left(\frac{9R^2}{16} \right)$$

$$= \frac{MR^2 + 18MR^2}{512}$$

$$= \frac{19MR^2}{512}$$

Let the foci of ellipse be
$$I_{remaining} = \frac{MR^2}{2} - \frac{19MR^2}{512}$$
 . Thus, the
$$= \frac{237MR^2}{512}$$

eccentricity of ellipse is calculated as,

$$\frac{237MR^2}{512}$$

Thus, the point $\rho = \frac{m}{v} = \frac{k}{r}$ or $m = \frac{kv}{r}$ does not lie on the parabola.

SCC|RRB||BPS||UPSC||NDA||JEE||CAT||NEFT|
OTHER STATE EXAMS AND UNIVERSITY EXAM QUESTION PAPER

For hyperbola,

Equation of the hyperbola is given by,

$$g_{inside} = \frac{Gmr}{R^3}$$

$$= \left(\frac{Gr}{R^3}\right) \left(\frac{kv}{r}\right)$$

$$= \frac{Gkv}{R^3}$$

The eccentricity of the hyperbola is calculated as,

 $\frac{Gkv}{R^3}$

PREVIOUS YEAR PAPERS QUESTIONPAPERESULT.COM

SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET|

Given that $g_{out} = \frac{Gm}{r^2}$, therefore,

$$F = Y\alpha_{L}A\Delta t$$

Thus, the equation of the ellipse is,

$$F = (2 \times 10^{11} \text{ Nm}^{-2})(1.2 \times 10^{-5} \text{ K}^{-1})(40 \times 10^{-4} \text{ m}^2)(10)$$
$$= 9.6 \times 10^4 \text{ N}$$
$$= 1 \times 10^5 \text{ N}$$

All the options are checked by substituting the given points on the hyperbola, Check option (4).

For the point
$$Q = \frac{\pi r^4}{8\eta} \frac{\Delta P}{L}$$
,

$$\frac{P_1 r_1^4}{l_1} = \frac{P_2 r_2^4}{l_2}$$

$$\frac{P_1 r_1^4}{l_1} = \frac{4P_1 r_2^4}{\frac{I_1}{4}}$$

$$r_2^4 = \frac{r_1^4}{16}$$

$$\mathbf{r}_2 = \frac{\mathbf{r}_1}{2}$$

$\frac{P_1 r_1^4}{l_1} = \frac{4P_1 r_2^4}{\frac{I_1}{4}}$ $r_2^4 = \frac{r_1^4}{16}$ PREVIOUS YEAR PAPERS QUESTIONPAPERESULT.COM SCC[RRB][BPS][UPSC][NDA][JEE][CAT][NEET]

Therefore, option (4) is correct.

83. The following figure shows the triangle ABC with all its vertices.

The coordinates of point D is as follows,

$$u_{initial} = \frac{5}{2} NRT$$

The direction cosine of median AD is given by,

$$u_{\text{final}} = \frac{3}{2} (2nRT) + \frac{5}{2} (N-n)RT$$

$$= \frac{1}{2} nRT + \frac{5}{2} NRT \text{ JOUS YEAR PAPERS}$$
OUESTIONPAPERESULT.COM

SCC|RRB|IBPS|UPSC|NDA|JEE|CAT|NEET

The vector AD is written as follows,

$$U_{total} = \frac{1}{2}nRT + \frac{5}{2}NRT - \frac{5}{2}NRT$$

$$= \frac{1}{2}nRT$$

From the above expression,

$$a = a_0 e^{\frac{-bt}{m}}$$

From the above expression, the value of $^{\rm E} \propto a^2$ is found out to $a \propto E$

$$a = \frac{a_0}{\sqrt{2}} = \frac{bt}{m}$$

be 7 and the value of

is found out to be 10.

$$=\frac{10^{-2} \, \mathrm{t}}{0.1}$$

Thus, the value of given expression is calculated as,

$$\frac{a_0}{\sqrt{2}} = a_0 e^{-\frac{t}{10}}$$

$$\frac{1}{\sqrt{2}} = e^{-\frac{t}{10}}$$

$$\ln\sqrt{2} = \frac{t}{10}$$

$$t = 3.5 sec$$

84. The given equation of line is as follows,

$$v = \frac{\omega}{k}$$

$$v = \frac{200\pi}{\left(\frac{5\pi}{4}\right)}$$
$$= 160 \text{ m/s}$$

The given two lines are coplanar. Thus,

$$\Phi_1 = \Phi_2 = \Phi_3 = \Phi_4$$

Therefore, there are three possible values of λ .

QUESTIONPAPERESULT.COM

85. The expression for the centroid of the triangle ABC for the given position vectors \vec{a} , \vec{b} and \vec{c} is as follows,

Centroid
$$\equiv \left(\frac{\vec{a} + \vec{b} + \vec{c}}{3}\right)$$

QPR PAPER

The relationship between the centroid, circumcenter and orthocenter is shown in the following diagram.

Therefore, PREVIOUS YEA

Orthocentre = 3(centroid) - 2(circumcenter)

Orthocentre =
$$3\left(\frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) - 2\left(\frac{\vec{a} + \vec{b} + \vec{c}}{4}\right)$$

$$= \left(\frac{\vec{a} + \vec{b} + \vec{c}}{2}\right)$$

86. The mean of 5 observations is 5. This can be expressed in the numerical form as,

$$\overline{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$$

$$5 = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 = 25$$

$$\sum_{i=1}^{5} x_i = 25$$
(1)

The variance of the observations is calculated as,

$$\begin{aligned} & P\sigma^2 = 124JS \text{ YEAR PAPERS} \\ & \underbrace{\sum x_1^2 - \left(\overline{x}\right)^2}_{S \text{ THER S}} = 124 \text{ UPSC} \text{ INDA} \text{ [JEE] CAT [NEET]} \\ & \underbrace{\sum x_1^2 = 745}_{APP} \\ & x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 745 \end{aligned}$$

Substitute the given three observations,

Consider as the three observations x_3 , x_4 and x_5 are 1, 2 and 6 respectively.

Therefore, from the above equation,

$$x_1^2 + x_2^2 + (1^2) + 2^2 + 6^2 = 745$$

 $x_1^2 + x_2^2 = 704$ (2)

Similarly,

From equation (1),

$$x_1 + x_2 + 1 + 2 + 6 = 25$$

 $x_1 + x_2 = 16$ (3)

From equation (2) and equation (3),

$$(x_1 + x_2)^2 = (16)^2$$

$$2x_1x_2 + 704 = 256$$

$$x_1x_2 = \frac{256 - 704}{10E_2} \text{ OUS YEAR PAPERS}$$

$$x_1x_2 = -224^{RE[IBPS]} \text{ UPSC[NDA]EE[CAT]NEET]}$$
other state exams and university exam question paper

Mobile

The mean deviation is calculated as follows,

$$\frac{\sum |x_1 - 5|}{5} = \frac{|x_1 - 5| + |x_2 - 5| + |1 - 5| + |2 - 5| + |6 - 5|}{5}$$

$$= \frac{8 + |x_1 - 5| + |16 - x_1 - 5|}{5}$$

$$= \frac{8 + 6}{5}$$

$$= 2.8$$

87. The experiment succeeds twice as often as it fails. The condition is mathematically written as,

$$p = 2q$$

The total number of experiments is given by,

$$p + q = 1$$

From above equations, the value of q is $\frac{1}{3}$ and the value of p is

 $\frac{2}{3}$.

PREVIOUS YEAR PAPERS QUESTIONPAPERESULT.COM

The probability of at least 5 successes in the six trails is given by,

$${}^{6}C_{5}p^{5}q + {}^{6}C_{6}p^{6} = 6\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right) + 1\left(\frac{2}{3}\right)^{6}$$
$$= \frac{256}{729}$$

88. Consider the given expression as,

$$y = \tan A + \tan B$$

Differentiate the above equation with respect to A.

$$\frac{dy}{dA} = \sec^2 A - \sec^2 B$$

$$= \sec^2 A - \sec^2 \left(\frac{\pi}{6} - A\right) \qquad \left(\because A + B = \frac{\pi}{6}\right)$$

The expression $(\tan A + \tan B)$ increases in the interval $\left\lfloor \frac{\pi}{12}, \frac{\pi}{6} \right\rfloor$ and decreases in the interval $\left\lfloor 0, \frac{\pi}{12} \right\rfloor$. Thus, it is can be concluded that the expression $(\tan A + \tan B)$ is minimum when A and B is equal to $\frac{\pi}{12}$. Other state exams and university exam question paper

Mobile

Therefore, the minimum value of the expression is calculated as,

$$y_{min} = 2 \tan \frac{\pi}{12}$$

$$= \left(2 - \sqrt{3}\right) 2$$

$$= 4 - 2\sqrt{3}$$

89. The following figure is a pictorial representation of the given conditions.

From the figure the height of the tower is calculated as,

$$\frac{1^{2}}{4} + \left(54\sqrt{2}\right)^{2} = \frac{31^{2}}{4} \text{ REVIOUS YEAR PAPERS}$$

$$\left(54\right)^{2} \times 2 \times 2 = 1^{2} \text{ C} |\text{RRB}| \text{ IBPS} |\text{ UPSC}| \text{ NDA} |\text{ JEE}| \text{ CAT} |\text{ NEET}|$$

$$1 = 54 \times 2$$

$$= 108 \text{ m}$$
Mobile

90. Assume the side of a square doubles to be represented as p. The area of square increases by four times. Let it be represents by q. Thus, the contra positive of p → q is ~ q →~ p.

Therefore, the correct option is (4).